1. Overview

The Non-Rigid Structure from Motion (NRSFM) problem: given corresponding 2D points in multiple images of a non-rigid object, the goal is to recover the object's 3D shape and pose in each image.

Standard approach: low-rank matrix factorization, with 3D shapes modeled within a low-dimensional linear space; non-linear deformations weaken the low-rank constraint, increasing the number of basis shapes in the linear model.

Kernel NRSFM: using the kernel trick, our new model complements the low-rank constraint by capturing non-linear relationships in the coefficients of the standard model; our model is flexible and can use different kernel functions.

2. NRSFM

Matrix Factorization: a linear space with K basis shapes $\{S_k\}$.

\[W = DF + S \]

Input

<table>
<thead>
<tr>
<th>observed 2D shapes</th>
<th>camera matrices</th>
</tr>
</thead>
</table>

Output

| 3D shape of i^{th} image: $S(c_i) = \sum_{k=1}^{K} c_{i,k} S_k$ |

Low-rank constraint: with K basis shapes, $\text{rank}(W) \leq 3K$.

The Artificial Slinky Toy: 1 degree of freedom:

3. Kernel SRM

General approach: for each observed 2D shape in W, the reconstructed 3D shape is the output of a non-linear mapping (\leftrightarrow) of a point c_i in an h-dimensional shape space ($h = 2$).

\[W = \text{D}(K_{c,b} K_{b,c}^{-1} K_{b,c}) \]

\[W = \text{D}(\text{CC}^T \otimes \text{I}_3) D^T \]

Use generalized inner products given by a kernel function, e.g.,

\[\kappa(c_i, c_{i'}) = \sigma(c_i - c_{i'}) \]

Problem: low-rank constraint is lost because K is full rank!

Solution: consider a subset of basis shapes, $\{b_1, \ldots, b_K\}$.

The Low-Rank Kernel Trick:

\[K \approx K_{c,b} K_{b,c} K_{b,c}^{-1} K_{b,c} \]

The non-unique factorization of W is then obtained with

\[M = \text{D}(K_{c,b} K_{b,c}^{-1} \otimes \text{I}_3) \]

The 3D shape reconstructed for the i^{th} image is

\[S(c_i) = \{ \kappa(c_i, b_1) \ldots \kappa(c_i, b_K) \otimes \text{I}_3 \} \text{M}^T W \]

with $c_i, b_k \in \mathbb{R}^h$ ($h < K$) in a more compact shape space!

Kernel Shape Trajectory Approach (KSTA):

Compact representation X of smooth shape deformation [1]:

\[x = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \]

\[b_k^T = \cos(t_k)^T X \]

single scalar t_k defines b_k along the shape trajectory

4. Experimental Results

Validation on motion capture and artificial 3D datasets:

- **Learned Models:** shape spaces and non-linear mappings,

- **Quantitative Evaluation:** normalized reconstruction errors,

- **References and Acknowledgements**

This work was supported by NIH grants R01 EY 020834 and R21 DC 011081.