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Abstract

Research in face perception and emotion theory requires
very large annotated databases of images of facial expres-
sions of emotion. Annotations should include Action Units
(AUs) and their intensities as well as emotion category.
This goal cannot be readily achieved manually. Herein,
we present a novel computer vision algorithm to annotate
a large database of one million images of facial expres-
sions of emotion in the wild (i.e., face images downloaded
from the Internet). First, we show that this newly pro-
posed algorithm can recognize AUs and their intensities re-
liably across databases. To our knowledge, this is the first
published algorithm to achieve highly-accurate results in
the recognition of AUs and their intensities across multi-
ple databases. Our algorithm also runs in real-time (>30
images/second), allowing it to work with large numbers of
images and video sequences. Second, we use WordNet to
download 1,000,000 images of facial expressions with as-
sociated emotion keywords from the Internet. These images
are then automatically annotated with AUs, AU intensities
and emotion categories by our algorithm. The result is a
highly useful database that can be readily queried using se-
mantic descriptions for applications in computer vision, af-
fective computing, social and cognitive psychology and neu-
roscience; e.g., “show me all the images with happy faces”
or “all images with AU 1 at intensity c.”

1. Introduction

Basic research in face perception and emotion theory
cannot be completed without large annotated databases of
images and video sequences of facial expressions of emo-
tion [7]. Some of the most useful and typically needed an-
notations are Action Units (AUs), AU intensities, and emo-
tion categories [8]. While small and medium size databases
can be manually annotated by expert coders over several
months [ 1, 5], large databases cannot. For example, even if

it were possible to annotate each face image very fast by an
expert coder (say, 20 seconds/image)', it would take 5,556
hours to code a million images, which translates to 694 (8-
hour) working days or 2.66 years of uninterrupted work.

This complexity can sometimes be managed, e.g., in im-
age segmentation [18] and object categorization [17], be-
cause everyone knows how to do these annotations with
minimal instructions and online tools (e.g., Amazon’s Me-
chanical Turk) can be utilized to recruit large numbers of
people. But AU coding requires specific expertise that takes
months to learn and perfect and, hence, alternative solutions
are needed. This is why recent years have seen a number
of computer vision algorithms that provide fully- or semi-
automatic means of AU annotation [20, 10, 22, 2, 26, 27, 6].

The major problem with existing algorithms is that they
either do not recognize all the necessary AUs for all applica-
tions, do not specify AU intensity, are too computational de-
manding in space and/or time to work with large database,
or are only tested within databases (i.e., even when multiple
databases are used, training and testing is generally done
within each database independently).

The present paper describes a new computer vision al-
gorithm for the recognition of AUs typically seen in most
applications, their intensities, and a large number (23) of
basic and compound emotion categories across databases.
Additionally, images are annotated semantically with 421
emotion keywords. (A list of these semantic labels is in the
Supplementary Materials.)

Crucially, our algorithm is the first to provide reliable
recognition of AUs and their intensities across databases
and runs in real-time (>30 images/second). This allows
us to automatically annotate a large database of a million
facial expressions of emotion images “in the wild” in about
11 hours in a PC with a 2.8 GHz i7 core and 32 Gb of RAM.

The result is a database of facial expressions that can be
readily queried by AU, AU intensity, emotion category, or

'Expert coders typically use video rather than still images. Coding in
stills is generally done by comparing the images of an expressive face with
the neutral face of the same individual.
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Figure 1: The computer vision algorithm described in the present work was used to automatically annotate emotion category
and AU in a million face images in the wild. These images were downloaded using a variety of web search engines by
selecting only images with faces and with associated emotion keywords in WordNet [15]. Shown above are three example
queries. The top example is the results of two queries obtained when retrieving all images that have been identified as happy
and fearful by our algorithm. Also shown is the number of images in our database of images in the wild that were annotated
as either happy or fearful. The next example queries show the results of retrieving all images with AU 4 or 6 present, and

images with the emotive keyword “anxiety” and “disaproval.”

emotion keyword, Figure 1. Such a database will prove in-
valuable for the design of new computer vision algorithms
as well as basic, translational and clinical studies in so-
cial and cognitive psychology, social and cognitive neuro-
science, neuromarketing, and psychiatry, to name but a few.

2. AU and Intensity Recognition

We derive a novel approach for the recognition of AUs.
Our algorithm runs at over 30 images/second and is highly
accurate even across databases. Note that, to date, most al-
gorithms have only achieved good results within databases.
The major contributions of our proposed approach is that it
achieves high recognition accuracies even across databases
and runs in real time. This is what allows us to automati-

cally annotate a million images in the wild. We also catego-
rize facial expressions within one of the twenty-three basic
and compound emotion categories defined in [7]. Catego-
rization of emotion is given by the detected AU pattern of
activation. Not all images belong to one of these 23 cate-
gories. When this is the case, the image is only annotated
with AUs, not emotion category. If an image does not have
any AU active, it is classified as a neutral expression.

2.1. Face space

We start by defining the feature space employed to rep-
resent AUs in face images. Perception of faces, and facial
expressions in particular, by humans is known to involve a
combination of shape and shading analyses [19, 13].

Shape features thought to play a major role in the per-
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Figure 2: (a) Shown here are the normalized face landmarks
8;5 (j = 1,...,66) used by the proposed algorithm. Fifteen
of them correspond to anatomical landmarks (e.g., corners
of the eyes, mouth and brows, tip of the nose, and chin).
The others are pseudo-landmarks defined about the edge of
the eyelids, mouth, brows, lips and jaw line as well as the
midline of the nose going from the tip of the nose to the
horizontal line given by the center of the two eyes. The
number of pseudo-landmarks defining the contour of each
facial component (e.g., brows) is constant. This guarantees
equivalency of landmark position across people. (b) The
Delaunay triangulation used by the algorithm derived in the
present paper. The number of triangles in this configura-
tion is 107. Also shown in the image are the angles of the
vector 0, = (041, ... ,Haqa)T (with ¢, = 3), which define
the angles of the triangles emanating from the normalized
landmark §;,.

ception of facial expressions of emotion are second-order
statistics of facial landmarks (i.e., distances and angles be-
tween landmark points) [16]. These are sometimes called
configural features, because they define the configuration
of the face.

Let s;; = (sile, . ,siij)T be the vector of landmark
points in the j** sample image (j = 1,...,n;) of AU i,

where s;;, € R2? are the 2D image coordinates of the Kt
landmark, and n; is the number of sample images with AU
present. These face landmarks can be readily obtained with
state-of-the-art computer vision algorithms. Specifically,
we combine the algorithms defined in [24, 9] to automat-
ically detect the 66 landmarks shown in Figure 2a. Thus,
Si; € R132,

All training images are then normalized to have the same
inter-eye distance of 7 pixels. Specifically, 8;; = cs;j,
where ¢ = 7/||l — r||2, | and r are the image coordinates of
the center of the left and right eye, ||.||2 defines the 2-norm

of a vector, §;; = (éile, - ,éiij) and we used 7 = 300.
The location of the center of each eye can be readily com-

puted as the geometric mid-point between the landmarks

defining the two corners of the eye.
Now, define the shape feature vector of configural fea-
tures as,

T
Xij = (dij127-~-adijp71p70?a--~7017;) ) (N

where d;jjqa, = [|8ija — Sijb||2 are the Euclidean distances
between normalized landmarks,a = 1,...,p— 1, b=a +
1,...,p,and 0, = (041, .. ,HQ%)T are the angles defined
by each of the Delaunay triangles emanating from the nor-
malized landmark §;,, with g, the number of Delaunay tri-
angles originating at §;;, and Y 1%, 04, < 360° (the equal-
ity holds for non-boundary landmark points). Specifically,
we use the Delaunay triangulation of the face shown in Fig-
ure 2b. Note that since each triangle in this figure can be
defined by three angles and we have 107 triangles, the total
number of angles in our shape feature vector is 321. More
generally, the shape feature vectors x;; € RP(P=1)/2+3t
where p is the number of landmarks and ¢ the number of
triangles in the Delaunay triangulation. With p = 66 and
t = 107, we have x;; € R?66,

Next, we use Gabor filters centered at each of the nor-
malized landmark points S; ;3 to model shading changes due
to the local deformation of the skin. When a facial muscle
group deforms the skin of the face locally, the reflectance
properties of the skin change (i.e., the skin’s bidirectional
reflectance distribution function is defined as a function of
the skin’s wrinkles because this changes the way light pene-
trates and travels between the epidermis and the dermis and
may also vary their hemoglobin levels [1]) as well as the
foreshortening of the light source as seen from a point on
the surface of the skin.

Cells in early visual cortex in humans can be modelled
using Gabor filters [4], and there is evidence that face per-
ception uses this Gabor-like modeling to gain invariance to
shading changes such as those seen when expressing emo-
tions [3, 19, 23]. Formally, let

N 52 + 252 s
9 Sijrs X\, a, d,7) = exp 1722 cos (27r—1 + qS) ,
20 A
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ith &0 = (3 A T A o .
with ;5 = (85581, 8ijk2) > S1 = Sijk1 COS @ + 852 sin @,
Sg = —3ip18ina + 8;p2 cosa, A the wavelength (i.e.,

number of cycles/pixel), a the orientation (i.e., the angle of
the normal vector of the sinusoidal function), ¢ the phase
(i.e., the offset of the sinusoidal function), v the (spatial)
aspect ratio, and o the scale of the filter (i.e., the standard
deviation of the Gaussian window).

We use a Gabor filter bank with o orientations, s spa-
tial scales, and r phases. We set A = {4,4v/2,4 x
2,4(2v/2),4(2 x 2)} = {4,4V/2,8,8V/2,16} and v = 1,
since these values have been shown to be appropriate to
represent facial expressions of emotion [7]. The values of



o, s and r are learned using cross-validation on the train-
ing set. This means, we use the following set of possible
values @ = {4,6,8,10}, o = {\/4,1/2,3)\/4,\} and
¢ = {0,1, 2} and use 5-fold cross-validation on the training
set to determine which set of parameters best discriminates
each AU in our face space.

Formally, let I;; be the j*" sample image with AU i
present and define

gijk = (9 (Bijrs A, a1, d1,7) * Lij, . . - 3)
9 (8113 A5y oy by Y) * 15)T

)

as the feature vector of Gabor responses at the k*"* landmark
points, where * defines the convolution of the filter ¢(.) with
the image L;;, and ), is the k" element of the set \ defined
above; the same applies to a;, and ¢y, but not to -y since this
is always 1.

We can now define the feature vector of the Gabor re-
sponses on all landmark points for the 5" sample image
with AU ¢ active as

gl )

These feature vecotros define the shading information of the
local patches around the landmarks of the face and their di-
mensionality is g;; € R5XPX0Xsxr,

Finally, putting everything together, we obtained the
following feature vectors defining the shape and shading

changes of AU i in our face space,

gij = (g;'lea--'

2= (x5.gh)", j=1,.. (5)
2.2. Classification in face space
Let the training set of AU ¢ be
Di = {(zi1,Yi1) s - - - » (Zin» Yiny) » (6)
(Zmi+1, yim—s—l) s (Zini—&-'mm Yi m-&-vru)}’

where y;; = 1 for j = 1,...,n,, indicating that AU 7 is
present in the image, y;; = O for j = n; +1,...,n; +my,
indicating that AU 7 is not present in the image, and m; is
the number of sample images that do notr have AU ¢ active.

The training set above is also ordered as follows. The set

Di(a) = {(Zi1,¥i1) s - s (Bingw> Yinea )} @)

includes the n;, samples with AU 7 active at intensity a (that
is the lowest intensity of activation of an AU), the set

Dl(b) = {(Zinm+1ayinm+1)a"~a ()
(Zinia+nins Yinia+ni) b

are the n;; samples with AU ¢ active at intensity b (which is
the second smallest intensity), the set

Di(c) = { (Ziniatni+1s Yiniatnip+1) s 9

(Zi Nia+nip+nics Yi nia“l’nib“l’nic)}

are the n;. samples with AU ¢ active at intensity ¢ (which is
the next intensity), and the set

Di(d) = { (Zinsatniptnic+1 Yinigtniptnic1) s (10)

(Zi Niat+nib+nic+tnias Yinia+nip+nict+nia )}

are the n;4 samples with AU 1 active at intensity d (which is
the highest intensity we have in the databases we used), and
Nia + Nip + Nic + Nid = Ny

Recall that an AU can be active at five intensities, which
are labeled a, b, ¢, d, and e [8]. In the databases we will use
in this paper, there are no examples with intensity e and,
hence, we only consider the four other intensities.

The four training sets defined above are subsets of D;
and are thus represented as different subclasses of the set
of images with AU 1 active. This observation directly sug-
gests the use of a subclass-based classifier. In particular, we
use Kernel Subclass Discriminant Analysis (KSDA) [25]
to derive our algorithm. The reason we chose KSDA is
because it can uncover complex non-linear classification
boundaries by optimizing the kernel matrix and number
of subclasses, i.e., while other kernel methods use cross-
validation on the training data to find an appropriate ker-
nel mapping, KSDA optimizes a class discriminant cri-
terion that is theoretically known to separate classes op-
timally wrt Bayes. This criterion is formally given by
Qi(pi, hi1, hiz) = Qi1 (@i, hit, hi2)Qia (@i, hit, hiz), with
Qi1(ps, hi1, hio) responsible for maximizing homoscedas-
ticity (i.e., since the goal of the kernel map is to find a ker-
nel space F where the data is linearly separable, this means
that the subclasses will need to be linearly separable in F,
which is the case when the class distributions share the same
variance), and Q;2(p;, h;1, hi2) maximizes the distance be-
tween all subclass means (i.e., which is used to find a Bayes
classifier with smaller Bayes error?).

Thus, the first component of the KSDA criterion pre-
sented above is given by,

1 hi1t hit+hio tr (E;pcf Eﬁ.{l)
Qu (i i, i) hi1hio Z Z tr (25:?) tr (Efj) |

e=1 d=hi

an
where Eﬁi is the subclass covariance matrix (i.e., the co-
variance matrix of the samples in subclass /) in the kernel
space defined by the mapping function ¢;(.) : R¢ — F,
h;1 is the number of subclasses representing AU ¢ is present
in the image, h;o is the number of subclasses representing

2To see this recall that the Bayes classification boundary is given in a
location of feature space where the probabilities of the two Normal distri-
butions are identical (i.e., p(z|N (p1, 1)) = p(z|N (u2, 3X2)), where
N(pi,%;) is a Normal distribution with mean p; and covariance ma-
trix 3J;. Separating the means of two Normal distributions decreases the
value where this equality holds, i.e., the equality p(x|N (p1,%1)) =
p(x|N (u2,32)) is given at a probability values lower than before and,
hence, the Bayes error is reduced.



AU i is not present in the image, and recall e = 3¢ + p(p —
1)/245 X p x 0 x s x r is the dimensionality of the feature
vectors in the face space defined in Section 2.1.

The second component of the KSDA criterion is,

hi1 hii+hiz
Qi2(pis hit, hiz) = Z Z Pic Pia I — mig 5
c=1 d=hi;+1
(12)

where p;; = n;/n; is the prior of subclass [ in class i (i.e.,
the class defining AU %), n; is the number of samples in
subclass [, and 417’ is the sample mean of subclass [ in class
i in the kernel space defined by the mapping function ;(.).

Specifically, we define the mapping functions ¢; (.) using
the Radial Basis Function (RBF) kernel,

2
k(zij,,2ij,) = exp (—vazm‘l|2> , (13)
where v; is the variance of the RBF, and ji,j0 =
1,...,n; +m;. Hence, our KSDA-based classifier is given
by the solution to,
vf,hi, hiy = arg max  Q;(vy, hit, hi2). (14)
Vi hi1,hiz

Solving for (14) yields the model for AU i, Figure 3.
To do this, we first divide the training set D; into five sub-
classes. The first subclass (i.e., [ = 1) includes the sample
feature vectors that correspond to the images with AU 4 ac-
tive at intensity a, that is, the D;(a) defined in (7). The
second subclass (I = 2) includes the sample subset (8).
Similarly, the third and fourth subclass (I = 2, 3) include
the sample subsets (9) and (10), respectively. Finally, the
five subclass (I = 5) includes the sample feature vectors

corresponding to the images with AU ¢ not active, i.e.,

D;(not active) = { (Zjn;+1,Yin,+1)5---,  (15)
(Zi ni+mi> Yi ni+mi)}~

Thus, initially, the number of subclasses to define AU i ac-
tive/inactive is five (i.e., h;1; = 4 and h;o = 1).

Optimizing (14) may yield additional subclasses. To see
this, note that the derived approach optimizes the parameter
of the kernel map v; as well as the number of subclasses h;;
and h;o. This means that our initial (five) subclasses can be
further subdivided into additional subclasses. For example,
when no kernel parameter v; can map the non-linearly sepa-
rable samples in D;(a) into a space where these are linearly
separable from the other subsets, D;(a) is further divided
into two subsets D;(a) = {D;(a1), D;(az2)}. This division
is simply given by a nearest-neighbor clustering. Formally,
let the sample z; ;41 be the nearest-neighbor to z;;, then the
division of D;(a) is readily given by,

Di(a1) = {(zi1,vi1) - - (Zing 2, Ying s2) } (16)
Dj(az) = {(Zm,,,/2+17yina/2+1) Yo (zinaayina)}~

AU intensity
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Figure 3: In the hypothetical model shown above, the sam-
ple images with AU 4 active are first divided into four sub-
classes, with each subclass including the samples of AU 4
at the same intensity of activation (a—d). Then, the derived
KSDA-based approach uses (14) to further subdivide each
subclass into additional subclasses to find the kernel map-
ping that (intrinsically) maps the data into a kernel space
where the above Normal distributions can be separated lin-
early and are as far apart from each other as possible.

The same applies to D;(b), D;(c), D;(d) and
D;(not active).  Thus, optimizing (14) can result in
multiple subclasses to model the samples of each intensity
of activation or non-activation of AU i, e.g., if subclass
one (I = 1) defines the samples in D;(a) and we wish to
divide this into two subclasses (and currently h;; = 4),
then the first new two subclasses will be used to define the
samples in D;(a), with the fist subclass (I = 1) including
the samples in D;(a;) and the second subclass (I = 2)
those in D;(az) (and h;; will now be 5). Subsequent
subclasses will define the samples in D;(b), D;(c), D;(d)
and D;(not active) as defined above. Thus, the order of the
samples as given in D; never changes with subclasses 1
through h;; defining the sample feature vectors associated
to the images with AU i active and subclasses h;; + 1
through h;; + h;o those representing the images with AU ¢
not active. This end result is illustrated using a hypothetical
example in Figure 3.

Then, every test image I;.s; can be readily classified as
follows. First, its feature representation in face space zs¢
is computed as described in Section 2.1. Second, this vector
is projected into the kernel space obtained above. Let us call
this z;,,. To determine if this image has AU i active, we
find the nearest mean,

s hivthia. (17)

Jt= argrnjin ||Z1<5peist_/1';’;'i”2v Jg=1...



If j* < hy, then 1.4 is labeled as having AU ¢ active;
otherwise, it is not.

The classification result in (17) also provides intensity
recognition. If the samples represented by subclass [ are a
subset of those in D;(a), then the identified intensity is a.
Similarly, if the samples of subclass [ are a subset of those
in D;(b), D;(c) or D;(d), then the intensity of AU ¢ in the
test image I;.s: is b, ¢ and d, respectively. Of course, if
7% > h;1, the images does not have AU 4 present and there
is no intensity (or, one could say that the intensity is zero).

3. EmotioNet: Annotating a million face im-
ages in the wild

In the section to follow, we will present comparative
quantitative results of the approach defined in Section 2.
These results will show that the proposed algorithm can re-
liably recognize AUs and their intensities across databases.
To our knowledge, this is the first published algorithm
that can reliably recognize AUs and AU intensities across
databases. This fact allows us to now define a fully auto-
matic method to annotate AUs, AU intensities and emotion
categories on a large number of images in “the wild” (i.e.,
images downloaded from the Internet). In this section we
present the approach used to obtain and annotate this large
database of facial expressions.

3.1. Selecting images

We are interested in face images with associated emotive
keywords. To this end, we selected all the words derived
from the word “feeling” in WordNet [15].

WordNet includes synonyms (i.e., words that have the
same or nearly the same meaning), hyponyms (i.e., subor-
dinate nouns or nouns of more specific meaning, which de-
fines a hierarchy of relationships), troponymys (i.e., verbs
of more specific meaning, which defines a hierarchy of
verbs), and entailments (i.e., deductions or implications that
follow logically from or are implied by another meaning —
these define additional relationships between verbs).

We used these noun and verb relationships in WordNet
to identify words of emotive value starting at the root word
“feeling.” This resulted in a list of 457 concepts that were
then used to search for face images in a variety of popular
web search engines, i.e., we used the words in these con-
cepts as search keywords. Note that each concept includes a
list of synonyms, i.e., each concept is defined as a list of one
or more words with a common meaning. Example words in
our set are: affect, emotion, anger, choler, ire, fury, mad-
ness, irritation, frustration, creeps, love, timidity, adoration,
loyalty, etc. A complete list is provided in the Supplemen-
tary Materials.

While we only searched for face images, occasionally
non-face image were obtained. To eliminate these, we

checked for the presence of faces in all downloaded images
with the standard face detector of [21]. If a face was not
detected in an image by this algorithm, the image was elim-
inated. Visual inspection of the remaining images by the au-
thors further identify a few additional images with no faces
in them. These images were also eliminated. We also elim-
inated repeated and highly similar images. The end result
was a dataset of about a million images.

3.2. Image annotation

To successfully automatically annotate AU and AU in-
tensity in our set of a million face images in the wild, we
used the following approach. First, we used three available
databases with manually annotated AUs and AU intensities
to train the classifiers defined in Section 2. These databases
are: the shoulder pain database of [12], the Denver Inten-
sity of Spontaneous Facial Action (DISFA) dataset of [14],
and the database of compound facial expressions of emotion
(CFEE) of [7]. We used these databases because they pro-
vide a large number of samples with accurate annotations of
AUs an AU intensities. Training with these three datasets al-
lows our algorithm to learn to recognize AUs and AU inten-
sities under a large number of image conditions (e.g., each
database includes images at different resolutions, orienta-
tions and lighting conditions). These datasets also include a
variety of samples in both genders and most ethnicities and
races (especially the database of [7]). The resulting trained
system is then used to automatically annotate our one mil-
lion images in the wild.

Images may also belong to one of the 23 basic or com-
pound emotion categories defined in [7]. To produce a facial
expression of one of these emotion categories, a person will
need to activate the unique pattern of AUs listed in Table 1.
Thus, annotating emotion category in an image is as simple
as checking whether one of the unique AU activation pat-
terns listed in each row in Table 1 is present in the image.
For example, if an image has been annotated as having AUs
1, 2, 12 and 25 by our algorithm, we will also annotated it
as expressing the emotion category happily surprised.

The images in our database can thus be searched by AU,
AU intensity, basic and compound emotion category, and
WordNet concept. Six examples are given in Figure 1. The
first two examples in this figure show samples returned by
our system when retrieving images classified as “happy” or
“fearful.” The two examples in the middle of the figure show
sample images obtained when the query is AU 4 or 6. The
final two examples in this figure illustrate the use of key-
word searches using WordNet words, specifically, anxiety
and disapproval.

4. Experimental Results

We provide extensive evaluations of the proposed ap-
proach. Our evaluation of the derived algorithm is divided



Category AUs Category AUs
Happy 12,25 Sadly disgusted 4,10
Sad 4,15 Fearfully angry 4,20, 25
Fearful 1,4, 20,25 Fearfully surpd. 1,2,5, 20,25
Angry 4,7,24 Fearfully disgd. 1, 4, 10, 20, 25
Surprised 1,2,25,26 Angrily surprised 4,25,26
Disgusted 9,10, 17 Disgd. surprised 1,2,5,10
Happily sad 4,6,12,25 Happily fearful 1,2,12,25,26
Happily surpd. | 1,2,12,25 Angrily disgusted 4,10, 17
Happily disgd. 10, 12,25 Awed 1,2,5,25
Sadly fearful 1,4,15,25 Appalled 4,9,10
Sadly angry 4,7,15 Hatred 4,7,10
Sadly surprised 1,4, 25,26 - -

Table 1: Listed here are the prototypical AUs observed in
each basic and compound emotion category.

into three sets of experiments. First, we present compar-
ative results against the published literature using within-
databases classification. This is needed because, to our
knowledge, only one paper [20] has published results across
databases. Second, we provide results across databases
where we show that our ability to recognize AUs is com-
parable to that seen in within database recognition. And,
third, we use the algorithm derived in this paper to automat-
ically annotate a million facial expressions in the wild.

4.1. Within-database classification

We tested the algorithm derived in Section 2 on three
standard databases: the extended Cohn-Kanade database
(CK+) [11], the Denver Intensity of Spontaneous Facial Ac-
tion (DISFA) dataset [ 4], and the shoulder pain database of
[12].

In each database, we use 5-fold-cross validation to test
how well the proposed algorithm performs. These databases
include video sequences. Automatic recognition of AUs
is done at each frame of the video sequence and the re-
sults compared with the provided ground-truth. To more
accurately compare our results with state-of-the-art algo-
rithms, we compute the F1 score, defined as, F1 score =
2 precisionxRecall, where Precision (also called positive pre-
dictive value) is the fraction of the automatic annotations of
AU  that are correctly recognized (i.e., number of correct
recognitions of AU ¢ / number of images with detected AU
1), and Recall (also called sensitivity) is the number of cor-
rect recognitions of AU 7 over the actual number of images
with AU 1.

Comparative results on the recognition of AUs in these
three databases are given in Figure 4. This figure shows
comparative results with the following algorithms: the
Hierarchical-Restricted Boltzmann Machine (HRBM) algo-
rithm of [22], the nonrigid registration with Free-Form De-
formations (FFD) algorithm of [10], and the /,,-norm algo-
rithm of [26]. Comparative results on the shoulder database

(a) = This paper ®HRBM ®FFD *Ip-norm
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Figure 4: Cross-validation results within each database for
the method derived in this paper and those in the literature.
Results correspond to (a) CK+, (b) DISFA, and (c) shoulder
pain databases. (d) Mean Error of intensity estimation of 16
AUs in three databases using our algorithm.

can be found in the Supplementary Materials. These were
not included in this figure because the papers that report re-
sults on this database did not disclose F1 values. Compara-
tive results based on receiver operating characteristic (ROC)
curves are in the Supplementary Materials.

Next, we tested the accuracy of the proposed algo-
rithm in estimating AU intensity. Here, we use three
databases that include annotations of AU intensity: CK+
[11], DISFA [14], and CFEE [7]. To compute the ac-
curacy of AU intensity estimation, we code the four
levels of AU intensity a-d as 1-4 and use 0 to repre-
sent inactivity of the AU, then compute Mean Error =
n~! 3" | |Estimated AU intensity — Actual AU intensity|,
n the number of test images.
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of these three experiments. (b) Average intensity estimation
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ments.
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Additional results (e.g., successful detection rates,
ROCs) as well as additional comparisons to state-of-the-art
methods are provided in the Supplementary Materials.

4.2. Across-database classification

As seen in the previous section, the proposed algorithm
yields results superior to the state-of-the-art. In the present
section, we show that the algorithm defined above can also
recognize AUs accurately across databases. This means that
we train our algorithm using data from several databases
and test it on a separate (independent) database. This is an
extremely challenging task due to the large variability of
filming conditions employed in each database as well as the
high variability in the subject population.

Specifically, we used three of the above-defined
databases — CFEE, DISFA and CK+ — and run a leave-one-
database out test. This means that we use two of these
databases for training and one database for testing. Since
there are three ways of leaving one database out, we test
all three options. We report each of these results and their
average in Figure 5a. Figure 5b shows the average Mean
Error of estimating the AU intensity using this same leave-
one-database out approach.

4.3. EmotioNet database

Finally, we provide an analysis of the used of the derived
algorithm on our database of a million images of facial ex-
pressions described in Section 3. To estimate the accuracy
of these automatic annotations, we proceeded as follows.
First, the probability of correct annotation was obtained by
computing the probability of the feature vector z,, to be-
long to subclass j* as given by (17). Recall that j* specifies
the subclass closest to zf,,,. If this subclass models sam-
ples of AU i active, then the face in I,.; is assumed to have
AU ¢ active and the appropriate annotation is made. Now,
note that since this subclass is defined as a Normal distribu-
tion, NV (2;;~, f1ij« ), we can also compute the probability
of z7,, belonging to it, i.e., p (2], 4[N (X;j+, piz=)). This
allows us to sort the retrieved images as a function of their
probability of being correctly labeled. Then, from this or-
dered set, we randomly selected 3, 000 images in the top 1/3
of the list, 3, 000 in the middle 1/3, and 3, 000 in the bottom
1/3.

Only the top 1/3 are listed as having AU ¢ active,
since these are the only images with a large probability
p (z].5;|N (Xij+, pij+)). The number of true positives over
the number of true plus false positives was then calculated
in this set, yielding 80.9% in this group. Given the hetero-
geneity of the images in our database, this is considered a
really good result. The other two groups (middle and bot-
tom 1/3) also contain some instances of AU ¢ but recogni-
tion there would only be 74.9% and 67.2%, respectively,
which is clearly indicated by the low probability computed
by our algorithm. These results thus provide a quantitative
measure of reliability for the results retrieved using the sys-
tem summarized in Figure 1.

5. Conclusions

We have presented a novel computer vision algorithm
for the recognition of AUs and AU intensities in images of
faces. Our main contributions are: 1. Our algorithm can re-
liably recognize AUs and AU intensities across databases,
i.e., while other methods defined in the literature only report
recognition accuracies within databases, we demonstrate
that the algorithm derived in this paper can be trained us-
ing several databases to successfully recognize AUs and AU
intensities on an independent database of images not used
to train our classifiers. 2. We use this derived algorithm
to automatically construct and annotate a large database of
images of facial expressions of emotion. Images are anno-
tated with AUs, AU intensities and emotion categories. The
result is a database of a million images that can be read-
ily queried by AU, AU intensity, emotion category and/or
emotive keyword, Figure 1.
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1. Extended Experimental Results

The within-database classification results on the shoul-
der database were compared to methods described in the
literature which report results using ROC (Receiver Operat-
ing Characteristic) curves. ROC curves are used to visually
and analytically evaluate the performance of binary classi-
fiers. Recall that our classifiers are binary, i.e., AU present
(active) in the image or not. ROC plots display the true pos-
itive rate against the false positive rate. The true positive
rate is the sensitivity of the classifier, which we have pre-
ciously defined as Recall in the main paper. The false posi-
tive rate is the number of negative test samples classified as
positive (i.e., the image does not include AU 1 but is classi-
fied as having AU i present) over the total number of false
positives plus true negatives. Note that the derived algo-
rithm only provides a result, but this can be plotted in ROC
space and compared to state-of-the-art methods. Further-
more, since we run a five-fold cross validation, we actually
have five results plus the mean reported in the main docu-
ment. Thus, we can plot six results in ROC space. These
results are in Figure S1. Figure S2 provides the same ROC
plots for the DISFA database.

As mentioned above, our proposed approach does not
yield an ROC curve but rather a set of points in ROC space.
We can nevertheless estimate an ROC curve by changing
the value of the prior of each AU . In the results reported in
the main paper, we assumed equal priors for AU ¢ active and
not active. Reducing the prior of AU 7 active will decrease
the false detection rate, i.e., it is less likely to misclassify a
face that does not have AU i active as such. Increasing the
prior of AU 7 active will increase the true positive detection
rate. This is not what our algorithm does, but it is a simple
extension of what can be obtained in applications where the
use of priors is needed. Figures S3 and S4 provide the ROC
curves thus computed on two of the databases used in the
main paper, shoulder pain and DISFA.

The plots in Figures S3 allow us to compute the area un-

der the curve for the results of our algorithm on the shoulder
pain database. These and comparative results against the al-
gorithms of [5] and [ 1] are in Table SI. Once again, we
see that the results obtained with the proposed algorithm
are superior than those reported in the literature.

We also computed the results on a recent database of
spontaneous facial expressions, AM-FED [7]. Our F1
scores where as follows: .93 (AU 2), .89 (AU 4), .94 (AU
5), .82 (AU 9), .92 (AU 12), .75 (AU 14), .82 (AU 15), .92
(AU 17), .90 (AU 18), .72 (AU 26).

2. EmotioNet: Facial Expressions of Emotion
in the Wild

We collected one million images of facial expressions of
emotion in the wild. Images were downloaded from several
popular web search engines by using the emotive keywords
defined as nodes of the word “feeling” in WordNet [8] and
with the requirement that a face be present in the image.
The number of concepts (i.e., words with the same mean-
ing) given by WordNet was 421. These words are listed in
Tables S2-S5.

This search yielded a large number of images. These
images were further evaluated to guarantee they included
a face. This was done in two stages. First, we used the
face detector of [10] to detect faces in these images. Im-
ages where a face was not detected by this algorithm were
discarded. Second, the resulting images were visually in-
spected by the authors. Images that did not have a face, had
a drawing of a face or pornography were eliminated. The
end result was a dataset of one million images. This set of
images in the wild was the one used in the present work.
The number of images in these categories varies from a low
of 47 to a maximum of 6,300, and more than 1, 000 cate-
gories have > 1,000 images. The average number of sam-
ple images/category is 600 (805 stdv).

As described in the main paper, images were automati-
cally annotated by our algorithm. First, our algorithm anno-
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Figure S1: True positive rate against false positive rate of the proposed algorithm for each of the AUs automatically recog-
nized in the images of the shoulder pain database. Shown in the figure are the five results of the five-fold cross-validation test

(shown in blue) and the mean (shown in red).

tated AUs and AU intensities. The AUs we annotated were
1,2,4,5,6,9, 12, 15, 17, 20, 25 and 26, since these were
the well represented ones in the databases used for training
the system. Note that we need a set of accurately annotated
AUs and AU intensities to be included during training.

Figure S5a shows the percentages of images in our

database of facial expressions in the wild that where au-
tomatically annotated with AU i. For example, AU 1 was
automatically annotated in over 200, 000 images.

Importantly, we manually FACS-coded 10% of this
database. That is, a total of 100,000 images were manu-
ally annotated with AUs by experienced coders in our lab-
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Figure S2: True positive rate against false positive rate of the proposed algorithm for each of the AUs automatically recog-
nized in the images of the DISFA dataset.

AU 4 6 7 9 10 12 20 25 26 43

This paper 8245 9348 88.57 9256 86.15 9854 91.13 81.46 87.19 9547
Lucey etal. [5]  53.7 86.2 70 79.8 75.4 856  66.8 73.3 52.3 90.9
Zafaretal. [11] 78.77  91.2 92.1 96.53

Table S1: Area under the curve for the results shown in Figure S3.
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Figure S3: ROC curves for each AU on the shoulder pain database. ROC curves were computed by varying the value of the

priors for AU ¢ present and AU ¢ not present.

oratory. This allowed us to estimate the AU detection ac-
curacy of our algorithm, which was about 80%. Note this
is extremely accurate given the heterogeneity of the images
in the EmotioNet dataset. However, this number only con-
siders correct true positive and true negatives, but does not
include false negative. Additional work is needed to pro-
vide a full analysis of our proposed method on millions of

images.

Once an image had been annotated with AUs and AU in-
tensities, we used Table 1 to determine if the face in the
image expressed one of the 23 basic or compound emo-
tion categories described in [2, 3]. Note that a facial ex-
pression needs not belong to one of these categories. Only
when the unique pattern of AU activation described in Ta-
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Figure S4: ROC curves for each AU on the DISFA database. ROC curves were computed by varying the value of the priors

for AU i present and AU 7 not present.

ble 1 was present was the face classified as expressing one
of these emotions. Figure S5b shows the percentage of im-
ages of each emotion category in our database. For exam-
ple, over 78, 000 images include a facial expression of anger
and about 76,000 have an expression of sadly disgusted.
Our algorithm has also been successfully used to detect the

“not face” in images in the wild [1]. The "not face” is a
grammmatical marker of negation and a facial expression
of negation and disapproval.

The above two sections have shown additional quanti-
tative results and analyses of the approach and database of
facial expressions of emotion in the wild defined in the main



paper. Figure S6 now shows qualitative examples of the im-
ages automatically annotated with AU 12 active (present).

3. Rank ordering AU classification

To retrieve images with AU ¢ active, we rank-ordered
images according to the posterior probability given by the
logistic regression function in the face space of AU 7. More
formally, let z¥ be the sample feature vector of image I in
the kernel space of AU ¢, then the posterior probability is
given by,

1 < P(AU ¢ active|Z = z,)

=b; Tye S1
P(AU i inactive|Z = zsa)) +mn; 2%, (SI)

where b; and n; are the bias and normal of the hyperplane
defining the classifier of AU ¢ in kernel space. It is easy to
show that (S1) above is equivalent to,

1

- (52
1+ ¢~ (Pi+ni'z?)

P(AU i active|Z = z¥) =

The parameters b; and n; are estimated with iterative
re-weighted least squares on the training data D; and by
optimizing the following function,

ni+m;

* n*) = i (b T,ey_
(b*,nj) argg}ilril Jz::l {ylj(bl—i—nl z}) (S3)

log (1 + ef(bﬁ“szw)) } .

The images we previously shown in Figure S6 are rank-
ordered by (S3) such that the images in the first row have a
greater posterior than those in the second row and, in gen-
eral, the images of a top row have a larger posterior than
those in its bottom row. Images in the same row have a
similar posterior.

4. Ordinal Regression Metrics

The evaluation of AU intensities is a bit trickier than that
of AU active/inactive because these are defined by ordinal
variables. Unfortunately, evaluation of ordinal variables is
a difficult problem. One popular solution is to use the Mean
Zero-one Error (MZE), given by n=' 3" L(f(z:) # i)s
where n is the number of samples, L(.) is an indicator func-
tion, z, are the samples, y; are the ordinal labels, and f(.) is
the function that estimates the ordinal variable 3. Note that
this metric does not take the ordinal nature of the labels y;
into account and thus misclassifying a sample z; with ordi-
nal value k by any other value but k is considered equally
bad. This is not applicable to our case because misclassify-
ing AU intensity by one ordinal step is better than misclas-
sifying it by two which, in turn, is better than misclassifying
it by three and so on.

Two other popular methods for evaluating one’s esti-
mates of ordinal variables are the Mean Absolute Error
(MAE) and the Mean Square Error (MSE). Here, a function
g(.) is employed to assign real values to the ordinal cate-
gories, e.g., AU intensity a = 1, b = 2, ¢ = 3, d = 4 and
e = 5. The error is then measured as n=" 3" |y; — f(z:)|",
where y; and f(.) are now real numbers, and b = 1 for
MAE and b = 2 for MSE. This is a popular option and was
the one chosen to analyze the results in the main paper (with
b=1).

The main problem with the aforementioned approach is
that it assumes that the distance between any two ordinal
values is the same, i.e., the distance between AU intensity a
and b is the same as the distance between c and d. This is of
course not necessarily true.

While the distance between any pair of AU intensities
is difficult to define generally, its definition can be readily
obtained in most applications. For example, in some appli-
cations, misclassifying intensity a as c is twice as bad as
misclassifying a as b, and misclassifying intensity a as e
is twice as bad as misclassifying a as c¢. This corresponds
to a linear function and thus MSE or MAE are the most
appropriate measurements. However, when misclassifying
intensity a as c is only a little worse than misclassifying a
as b, MAE and MSE need to be modified. This can be easily
done by defining

LS M, £ (s4)
=1

where y; and z; now take values from the ordinal set
{a,b,c,d,e}, M(.,.) is a 5 x 5 matrix with each (p,q)
entry specifying how bad our estimation of AU intensity is
in our application. For example, we can define M (., .) as

a b c d e
0 1 1.2 | 13 | 14
1 0 1 12|13
1.2 1 0 1 1.2

1.3 |12] 1 0 1
141312 1
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Using the above defined metric (and b = 1) to calculate
the AU intensity estimation errors of our derived algorithm
across databases yields the following errors: .73 for AU 4,
.62 for AU 6, .58 for AU 9, .46 for AU 12, .7 for AU 20,
.43 for AU 25, and .49 for AU 26. These results would
substitute those previously reported in Figure S5b and are
based on the idea that misclassifying by one ordinal value
is almost as bad as any other misclassification.



1 Feeling 62 Anxiousness, disquiet

2 Affect 63 Insecurity

3 Emotion 64 Disquietude, edginess, inquietude, uneasiness
4 Conditioned emotional response 65 Care,concern, fear

5 Anger, choler, ire 66 Willies

6 Fury, madness, rage 67 Sinking

7 Wrath 68 Misgiving, qualm, scruple

8 Lividity 69 Jitteriness, jumpiness, nervousness, restiveness
9 Enragement, infuriation 70 Angst

10 | Offence, offense, umbrage 71 Joy, joyfulness, joyousness

11 | Indignation, outrage 72 Elation, lightness

12 | Dudgeon 73 Euphoria, euphory

13 Huffiness 74 Exultation, jubilance

14 | Dander, hackles 75 Triumph

15 | Irascibility, spleen 76 Excitement, exhilaration

16 | Conniption, fit, scene, tantrum 77 Bang, boot, charge, flush, kick, rush, thrill
17 | Annoyance,chafe, vexation 78 Intoxication

18 | Irritation,pique, temper 79 Titillation

19 | Frustration 80 Exuberance

20 | Aggravation, exasperation 81 Love

21 Harassment, torment 82 Adoration, worship

22 | Displeasure 83 Agape

23 | Fear, fearfulness, fright 84 Crush, infatuation

24 | Alarm, consternation, dismay 85 Amorousness, enamoredness
25 Creeps 86 Ardor, ardour

26 | Chill, frisson, quiver, shiver, shudder, thrill, tingle 87 Devotedness, devotion

27 | Horror 88 Benevolence

28 | Hysteria 89 Beneficence

29 | Affright, panic, terror 90 Heartstrings

30 | Swivet 91 Caring, lovingness

31 Scare 92 Warmheartedness, warmth

32 | Apprehension, apprehensiveness, dread 93 Hate, hatred

33 | Trepidation 94 Loyalty

34 | Boding, foreboding, premonition, presentiment 95 Abhorrence, abomination, detestation, execration, loathing, odium
35 | Shadow 96 Misanthropy

36 | Presage 97 Misogamy

37 | Suspense 98 Misogynism, misogyny

38 | Gloom, gloominess, somberness, somberness 99 Misology

39 | Chill, pall 100 | Misoneism

40 | Timidity, timidness, timorousness 101 Murderousness

41 | Shyness 102 | Despising

42 | Diffidence, self-distrust, self-doubt 103 Enmity, hostility

43 Hesitance, hesitancy 104 | Animosity, animus

44 | Unassertiveness 105 | Antagonism

45 | Intimidation 106 | Aggression, aggressiveness

46 | Awe, fear, reverence, veneration 107 | Belligerence, belligerency

47 | Anxiety 108 | Warpath

48 | Discomfiture, discomposure, disconcertion, disconcertment 109 | Bitterness, gall, rancor, rancor, resentment
49 | Trouble, worry 110 | Huffishness, sulkiness

50 | Grievance, grudge, score 111 Comfort

51 | Enviousness, envy 112 | Felicity, happiness

52 | Covetousness 113 Beatification, beatitude, blessedness
53 | Jealousy 114 | Enlightenment, nirvana

54 | Malevolence, malignity 115 | Radiance

55 | Maleficence 116 | State

56 | Malice, maliciousness, spite, spitefulness, venom 117 | Unhappiness

57 | Vengefulness, vindictiveness 118 | Embitterment

58 | Spirit 119 | Sadness, sorrow, sorrowfulness
59 | Embarrassment 120 | Huffishness, sulkiness

60 | Ecstasy, exaltation, rapture, raptus, transport 121 Bereavement, mourning

61 | Gratification, satisfaction 122 | Poignance, poignancy

Table S2: List of the WordNet concepts used as keywords to search images of faces in a variety of web search enginees.



123 | Glow 184 | Sex
124 | Faintness 185 | Pleasance, pleasure
125 Soul, soulfulness 186 | Afterglow
126 | Passion 187 Delectation, delight
127 | Infatuation 188 | Entrancement, ravishment
128 | Abandon, wildness 189 | Amusement
129 | Ardor, ardor, fervency, fervor, fervor, fire 190 | Schadenfreude
130 | Zeal 191 | Enjoyment
131 Storminess 192 | Gusto, relish, zest, zestfulness
132 | Sentiment 193 | Pleasantness
133 | Sentimentality 194 | Comfort
134 | Bathos, mawkishness 195 Consolation, solace, solacement
135 | Complex 196 | Alleviation, assuagement, relief
136 | Ambivalence, ambivalency 197 | Algolagnia, algophilia
137 | Conflict 198 | Sadism
138 | Apathy 199 | Sadomasochism
139 | Emotionlessness, impassiveness, impassivity, indifference, 200 | Masochism
phlegm, stolidity
140 | Languor,lassitude, listlessness 201 Pain, painfulness
141 | Desire 202 | Unpleasantness
142 | Ambition,aspiration, dream 203 Hurt, suffering
143 Emulation 204 | Agony, torment, torture
144 | Nationalism 205 | Throes
145 Bloodlust 206 | Discomfort, irritation, soreness
146 | Temptation 207 | Distress, hurt, suffering
147 | Craving 208 | Anguish, torment, torture
148 | Appetence, appetency, appetite 209 | Self-torment, self-torture
149 | Stomach 210 | Tsoris
150 | Addiction 211 | Wound
151 Want, wish, wishing 212 | Pang, stab, twinge
152 | Velleity 213 | Liking
153 | Hungriness, longing, yearning 214 | Leaning,propensity, tendency
154 | Hankering, yen 215 | Fancy, fondness, partiality
155 Pining 216 | Captivation, enchantment, enthrallment, fascination
156 | Lovesickness 217 | Penchant,predilection, preference, taste
157 | Wistfulness 218 | Weakness
158 | Nostalgia 219 | Mysophilia
159 | Homesickness 220 | Inclination
160 | Discontent,discontentment 221 Stomach
161 | Disgruntlement 222 | Undertow
162 | Dysphoria 223 | Friendliness
163 Dissatisfaction 224 | Amicability, amicableness
164 | Boredom ,ennui, tedium 225 Goodwill
165 | Blahs 226 | Brotherhood
166 | Fatigue 227 | Approval
167 | Displeasure 228 | Favor, favour
168 | Disappointment, letdown 229 | Approbation
169 | Defeat, frustration 230 | Admiration, esteem
170 | Concupiscence, eros 231 | Anglophilia
171 Love 232 | Philhellenism
172 | Aphrodisia 233 | Philogyny
173 | Passion 234 | Dislike
174 | Sensualism, sensuality, sensualness 235 | Disinclination
175 Amativeness, amorousness, eroticism, erotism, sexiness 236 | Anglophobia
176 | Carnality, lasciviousness, lubricity, prurience, pruriency 237 | Unfriendliness
177 | Fetish 238 | Alienation, disaffection, estrangement
178 | Libido 239 | Isolation
179 | Lecherousness, lust, lustfulness 240 | Antipathy, aversion, distaste
180 | Nymphomania 241 | Disapproval
181 | Satyriasis 242 | Contempt, despite, disdain, scorn
182 | Itch, urge 243 | Disgust
183 Caprice, impulse, whim 244 | Abhorrence, abomination, detestation, execration, loathing, odium

Table S3: Continues from Table S2.




245 | Horror, repugnance, repulsion, revulsion 306 | Sensation

246 | Nausea 307 | Tumult, turmoil

247 | Creepy-crawlies 308 | Calmness

248 | Scunner 309 | Placidity, placidness

249 | Technophobia 310 | Coolness, imperturbability

250 Antagonism 311 Dreaminess, languor

251 Gratitude 312 | Bravery, fearlessness

252 | Appreciativeness, gratefulness, thankfulness 313 | Security

253 | Ingratitude, ungratefulness 314 | Confidence

254 | Unconcern 315 | Quietness, quietude, tranquility, tranquillity
255 | Indifference 316 | Ataraxis, heartsease, peace, peacefulness, repose, serenity
256 | Aloofness, distance 317 | Easiness,relaxation

257 | Detachment, withdrawal 318 | Happiness

258 Coldheartedness, hardheartedness, heartlessness 319 Bonheur

259 | Cruelty, mercilessness, pitilessness, ruthlessness 320 | Gladfulness, gladness, gladsomeness

260 | Shame 321 | Gaiety, merriment

261 Conscience 322 | Glee, gleefulness, hilarity, mirth, mirthfulness
262 | Self-disgust, self-hatred 323 | Jocularity, jocundity

263 | Embarrassment 324 | Jolliness, jollity, joviality

264 | Self-consciousness, uncomfortableness, uneasiness 325 | Rejoicing

265 | Shamefacedness,sheepishness 326 | Belonging

266 | Chagrin, humiliation, mortification 327 | Comfortableness

267 | Confusion, discombobulation 328 | Closeness, intimacy

268 | Abashment, bashfulness 329 | Togetherness

269 | Discomfiture, discomposure, disconcertion, disconcertment 330 | Blitheness, cheerfulness

270 | Pride, pridefulness 331 | Buoyancy, perkiness

271 | Dignity, self-regard, self-respect, self-worth 332 | Carefreeness, insouciance, lightheartedness, lightsomeness
272 | Self-esteem, self-pride 333 | Contentment

273 | Ego, egotism, self-importance 334 | Satisfaction

274 | Conceit, self-love, vanity 335 | Pride

275 | Humbleness, humility 336 | Complacence, complacency, self-complacency, self-satisfaction
276 | Meekness, submission 337 Smugness

277 Self-depreciation 338 | Fulfillment, fulfilment

278 | Amazement, astonishment 339 | Gloat, gloating

279 | Admiration,wonder, wonderment 340 | Sadness, unhappiness

280 | Awe 341 | Dolefulness

281 | Surprise 342 | Heaviness

282 | Stupefaction 243 | Melancholy

283 | Daze, shock, stupor 344 | Gloom, gloominess, somberness, somberness
284 | Devastation 345 | Heavyheartedness

285 | Expectation 346 | Brooding, pensiveness

286 | Anticipation, expectancy 247 | Weltschmerz, world-weariness

287 | Suspense 248 | Misery

288 | Fever 349 | Desolation, forlornness, loneliness

289 | Hope 350 | Tearfulness, weepiness

290 | Levity 351 | Sorrow

291 | Gaiety, playfulness 352 | Brokenheartedness, grief, heartache, heartbreak
292 | Gravity, solemnity 353 | Dolor, dolour

293 | Earnestness, seriousness, sincerity 354 | Mournfulness, ruthfulness, sorrowfulness
294 | Sensitiveness, sensitivity 355 | Woe, woefulness

295 | Sensibility 356 | Plaintiveness

296 | Insight, perceptiveness, perceptivity 357 | Self-pity

297 Sensuousness 358 | Regret, rue, ruefulness, sorrow

298 | Feelings 359 | Attrition, contriteness, contrition

299 | Agitation 360 | Compunction, remorse, self-reproach

300 | Unrest 361 | Guilt

301 | Fidget, fidgetiness, restlessness 362 | Penance, penitence, repentance

302 | Impatience 363 | Cheerlessness, uncheerfulness

303 | Stewing 364 | Joylessness

304 | Stir 365 | Depression

305 | Electricity 366 | Demoralization

Table S4: Continues from Tables S2-S3.




367 | Helplessness 395 | Jolliness, jollity, joviality

368 | Despondence, despondency, disconsolateness, heartsickness 396 | Distemper

369 | Oppression, oppressiveness 397 | Moodiness

370 | Weight 398 | Glumness, moroseness, sullenness

371 Dysphoria 399 | Testiness, tetchiness, touchiness

372 | Dejectedness, dispiritedness, downheartedness, low-spiritedness, lowness 400 | Technophilia

373 | Hope 401 | Pet

374 | Hopefulness 402 | Sympathy

375 | Encouragement 403 | Concern

376 | Optimis 404 | Solicitousness, solicitude

377 | Sanguineness, sanguinity 405 | Softheartedness, tenderness

378 | Despair 406 | Kind-heartedness, kindheartedness

379 | Hopelessness 407 | Mellowness

380 | Resignation, surrender 408 | Exuberance

381 | Defeatism 409 | Compassion, compassionateness

382 | Discouragement, disheartenment, dismay 410 | Heartstrings

383 | Intimidation 411 Tenderheartedness, tenderness

384 | Pessimism 412 | Ardor, ardour, elan, zeal

385 | Cynicism 413 | Mercifulness, mercy

386 | Affection, affectionateness, fondness, heart, philia, tenderness 414 | Choler, crossness, fretfulness, fussiness, irritability,
warmheartedness, warmness peevishness, petulance

387 | Attachment 415 | Forgiveness

389 | Protectiveness 416 | Commiseration, pathos, pity, ruth

390 | Regard, respect 417 | Compatibility

391 | Humor, mood, temper 418 | Empathy

392 | Peeve 419 | Enthusiasm

393 | Sulk, sulkiness 420 | Gusto, relish, zest, zestfulness

394 | Amiability 421 | Avidity, avidness, eagerness, keenness

Table S5: Continues from Tables S2-S4.
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Figure S5: (a) Percentage of images (y-axis) automatically annotated with AU ¢ (z-axis). (b) Percentage of images (y-axis)
automatically annotated with one of the 23 basic or compound emotion categories (z-axis) listed in Table 1.



Figure S6: Sample images with AU 12 automatically annotated by our algorithm. The images are ranked according to the
probability of AU 12 being active in the image.
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Figure S7: The first two KSDA components of the face
space of an AU. Different colors correspond to distinct in-
tensities of the AU. Note how some intensities are divided
into subclasses, whereas others are not.

5. Subclass-based Representation of AUs

A key component of our algorithm is to assign the im-
ages with AU 7 active to distinct subclasses as a function of
their intensity of activation. That is, images that show AU
1 active at intensity a are assigned to a subclass of class ¢,
images showing AU ¢ active at intensity b are assigned to a
second subclass of class ¢, images showing AU ¢ active at
intensity c are assigned to a third subclass of class ¢, and
images showing AU ¢ active at intensity d are assigned to a
fourth subclass of class ¢. This innovative approach is what
allows us to simultaneously identify AUs and their intensi-
ties quickly and accurately in images.

This approach is related to the work of Subclass Discrim-
inant Analysis (SDA) [12], which is a mathematical formu-
lation specifically derived to identify the optimal number of
subclasses to maximize spreadability of samples in different
classes even when these are not defined by a Normal distri-
bution. This is achieved by minimizing a criterion defined
in [6], which guarantees Bayes optimality in this classifica-
tion process under mild conditions.

The approach derived in the present paper is different in
that we specify the initial subclass division, rather than us-
ing the Bayes criterion defined in [6]. Specifically, we de-
rive a Kernel (SDA-inspired) algorithm to learn to simulta-
neously identify AUs and their intensities in images. This is
done by first dividing the training data of each AU into five
sets — one for each of the four intensities, D;(a) to D;(d),
and another set to include the images that do not have that
AU active D;(not active) = D; —Uj=q b.c,d Di(j). Thus,
the initial number of subclasses for class AU 7 active is 4,
i.e., h;1 = 4, and, the initial number of subclasses for AU ¢

not active (i.e., not present) in the images is 1, i.e., hjo = 1.
This was illustrated in Figure 3 in the main paper. A 2D
plot, for one of the AUs, with real data is now shown in Fig-
ure S7. Also, the sample images in each of these five sets
are sorted using the nearest-neighbor algorithm of [12].

Next, we use the criterion derived in the main paper,
Qi(¥i, hi1, hia), to further optimize the number of classes
and the parameters of the kernel mapping function. This
criterion maximizes spherical-homoscedasticity in the RBF
kernel space, which is known to minimize the Bayes classi-
fication error [4]. Note that, in the paper, we used the RBF
kernel, but other options are possible, with each one yield-
ing a different optimization function Q(.).

6. Extended Discussion

The ability to automatically annotate facial action units
in the wild in real time is likely to revolutionize research in
the study or non-verbal communication and emotion theory.
To date, most studies have focused on the analysis of data
collected in the laboratory, even when this data corresponds
to spontaneous facial expressions. Extending these studies
to facial expressions in the wild is a necessary step.

The algorithm described in the present work achieves
this goal, allowing researchers to analyze their data quickly
and reliably. As a plus, our system is consistent with what
is known about the visual perception of facial expressions
of emotion by humans [3]. In fact, a recent result from our
laboratory has identified a small region of interest in the
human brain dedicated to the visual interpretation of facial
actions [9]. The computer vision system defined in this pa-
per could thus also help us advance our understanding of
human perception.
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