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Abstract—Color is a fundamental image feature of facial expressions. For example, when we furrow our eyebrows in anger, blood
rushes in, turning some face areas red; or when one goes white in fear as a result of the drainage of blood from the face. Surprisingly,
these image properties have not been exploited to recognize the facial action units (AUs) associated with these expressions. Herein,
we present the first system to do recognition of AUs and their intensities using these functional color changes. These color features are
shown to be robust to changes in identity, gender, race, ethnicity and skin color. Specifically, we identify the chromaticity changes
defining the transition of an AU from inactive to active and use an innovative Gabor transform-based algorithm to gain invariance to the
timing of these changes. Because these image changes are given by functions rather than vectors, we use a functional classifiers to
identify the most discriminant color features of an AU and its intensities. We demonstrate that, using these discriminant color features,
one can achieve results superior to those of the state-of-the-art. Finally, we define an algorithm that allows us to use the learned
functional color representation in still images. This is done by learning the mapping between images and the identified functional color
features in videos. Our algorithm works in realtime, i.e., >30 frames/second/CPU thread.

Index Terms—Facial expressions of emotion, face recognition, face perception, facial color, compound emotions, Gabor transform,
color vision, time invariant, recognition in video, recognition in still images.

1 INTRODUCTION

HE automatic recognition of facial Action Units (AUs)
T [1], [2] is a major problem in computer vision [3] with
applications in engineering (e.g., advertising, robotics, arti-
ficial intelligence) [4], [5], [6], education [7], linguistics [8],
psychology [9], [10], psychiatry [11], [12], cognitive science
and neuroscience [13], [14], to name but a few.

Most past and current computer vision systems use
spatio-temporal features (e.g., Gabor filters, high- and low-
spatial filtering) [15], [16], shape [17], [18], shading [12], [19]
and motion [20], [21] to identify AUs in images and video
sequences.

Although color is clearly another important feature of
facial expressions [22], it is yet to be used as a feature for the
recognition of AU activation.

To clarify the importance of color, let us look at the exam-
ple in Figure 1. As seen in this figure, when we contract and
relax our facial muscles, the shading and color in our faces
changes locally. For example, during a smile, the shading
and color of the cheeks changes due to the use of AU 12 (lip
corner puller). This contraction of facial muscles is known
to change the brdf (bidirectional reflectance distribution
function) of the face [23], yielding clearly visible image
changes [24].

In this paper, we will exploit these color changes to
detect AUs and their intensities. We will also demonstrate
that these changes are consistent across identities, gender,
race, ethnicity and skin color.

o All authors are with the Department of Electrical and Computer
Engineering, The Ohio State University, Columbus, OH, 43212.
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Fig. 1. Top: A few frames of a video sequences showing a facial ex-
pression of happily surprised. Note we have demarked a local region
on that individual’s right cheek with red lines. You may notice that the
average and standard devision of the color of the pixels in this local
region change over time. The value changes of the red, green and blue
channels of the pixels in this local region are given in the bottom plot,
with fJR(t) showing the functional change in the red channel, f].G(t) in
the green, and f5(t) in the blue. Our contribution is to derive a method
that can learn to identify when a facial action unit is active by exclusively
using these color changes.

Note that we define color changes locally using a func-

T
tion f;(t) € RS, where f;(t) = (fF(), fE(1), FP (1))
describes the color changes in each of the three channels
(R, G, B), ff(t), f£(t), fF(t) € R?, and j designates the j*"
local region. Specifically, we use the local regions given by
a set of automatically detected fiducial points [25], Figure
2. Aggregating these local functions, we obtain the global
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color function £(.) = (f1(t),..., fior(t))" € R%*2, ie., the
function f;(t) € R? of the 3 color channels in each of the
107 local regions, j = 1,...,107. The three channels are the
red, green and blue (R, G, B) of the camera.

The color representation described in the preceding
paragraph differs from previous shape and shading image
descriptors in that its samples are given by functions defin-
ing color properties only, f;(¢), i = 1,. .., n, n the number of
samples. (Note we have added a subscript ¢ to our notation
to identify the i*" sample feature function f;(¢).) This calls
for the use of a discriminant approach that works with
functions.

In order to work with these color functional changes,
we derive an approach to represent them in DCT (Discrete
Cosine Transform) space and use the Gabor transform to
gain invariance to time. The use of the Gabor transform in
our derivations is key, yielding a compact mathematical for-
mulation for detecting the color changes of an AU regardless
of when this occurs during a facial expression. That is, the
resulting algorithm is invariant to the duration, start and finish
of the AU activation within a video of a facial expressions.

Since these functions are defined in time, learning must
be done over video sequences. But testing can be done in
videos and still images. To use the learned functions in still
images, we need to first find the color functional changes of
an image. To do this, we use regression to learn the mapping
between an image of a facial expression and the functional
representation of the video of that same expression.

In summary, the present paper demonstrates, for the
first time, that the use of these color descriptors yields
classification accuracies superior to those reported in the
literature. This shows that the contribution of some of these
color features need to be uncorrelated to those of shading
and shape features used previously.

The paper is organized as follows. Section 2 derives
the color space used by our algorithm. Section 3 derives
functional classifiers to identify where in the video sequence
an AU is active/present. Section 4 defines a mapping from
still images to the derived functional representation of color
to allow recognition of AUs in images. Section 5 provides
extensive experimental validation of the derived algorithm.
We conclude in Section 6.

1.1 Related work

Despite many advances in object recognition, the automatic
coding of AUs in videos and images remains an open
problem in computer vision [3]. A 2017 challenge of AU
annotations in images collected “in the wild” demonstrated
that the problem is far from solved [26]. Even when large
amounts of training data are available, deep nets have a
hard time annotating AUs with good precision and recall
[27], [28], [29]. In this paper, we tackle this problem by
exploiting intrinsic functional changes of the color signal in
facial expressions of emotion in video sequences. We then
show how this can be readily extended to still images as
well.

The Gabor transform is specifically suited for our prob-
lem, given its ability to identify a template in a function [30].
Or, alternatively, one could employ the Wavelet transform
[31]. Here, we show how the Gabor transform can be used
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Fig. 2. The local regions of the face (left image) used by the derived
algorithm. These local regions are obtained by Delaunay triangulation
of the automatically detected fiducial points shown on the right image.
These fiducial points, s;; (j = 1,...,66), correspond to 15 anatomical
landmarks (e.g., corners of the eyes, mouth and brows, tip of the nose,
and chin) plus 51 pseudo-landmarks defined about the edge of the
eyelids, brows, nose, lips and jaw line. The number of pseudo-landmarks
defining the contour of each facial component (e.g., the brows) is con-
stant as is their inter-landmark distance. This guarantees equivalency of
landmark position across people. This triangulation yields 107 regions
(patches).

to find a template color function in a functional description
of a video sequence without the need of a grid search.
Similarly, color images have been used to identify optical
flow [32] and other image features [33], but not AUs and the
dynamic changes that define facial configurations. Never-
theless, color is known to play a major role in human vision
[22]. Herein, we identify the discriminant color templates
that specify AUs.

2 COLOR SPACE

This section details the computations needed to construct
the color feature space used by the proposed algorithm.

2.1 Local regions

We start with the i'"* sample video sequence V; =
{Li1,...,L;,}, where r; is the number of frames and I, €
R39% is the vectorized k" color image of ¢ x w RGB pixels.
We now need to describe V; as the sample function f;(¢)
defined above, Figure 1.

To do this, we first identify a set of physical facial
landmarks on the face and obtained the local regions using
the algorithm of [25]. Formally, we define these landmark
points in vector form as s;; = (Sik1, - - - , Sikes ), Where i is the
sample video index, k the frame number, and s;z; € R? are
the 2D image coordinates of the I*" landmark, I = 1, ..., 66,
Figure 2.

Next, let D;; = {d;1k, ..., d;px} be the set of P = 107
image patches d;;; obtained with the Delaunay triangula-
tion shown in Figure 2 (left image), where d; j;, € R3% is the
vector describing the j'" triangular local region of ¢;; RGB
pixels and, as above, i specifies the sample video number
(i=1,...,n)and k the frame (k =1,...,7;).

Note that the size (i.e., number of pixels, g;;) of these
local (triangular) regions not only varies across individuals
but also within a video sequence of the same person. This
is a result of the movement of the facial landmark points,
a necessary process to produce a facial expression. This is
evident in the images shown in Figures 1. Hence, we need
to define a feature space that is invariant to the number
of pixels in each of these local regions. We do this by
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Fig. 3. The top left plot shows the function f(.) of a video V. The bottom
left plot is a template function fr(.) representing the color changes
observed when people activate AU 1. Identifying this template fr(.) in
f(.) requires us to test all possible locations about time. This matching
process in computationally expensive. The Gabor transform solves this
complexity issue by identifying the location where the template func-
tion matches the color function without resorting to a sliding-window
approach (right-most plot).

computing statistics on the color of the pixels in each local
region as follows.

We compute the first and second (central) moments of
the color of each local region,

P
Wijk = %}1 Z dijkp
p=1
P
_ 2
ok = |G Y (dijkp — pij)” M
p=1

with dijk = (dijk1>~ .. ,dijkp)T and Hijk, Oijk S ]R?’. The
elements of o;;;, are the mean and standard deviations of
each individual color channel. We could compute additional
moments, but this did not result in better classification
accuracies in our experiments described below.

We can now construct the color feature vector of each

local patch,
@
where, recall, 7 is the sample video index (V;), j the local
patch number and r; the number of frames in this video
sequence.

This feature representation defines the contribution of
color in patch j. One can also include other proven features
to increase the richness of this representation. For example,
responses to filters or shape features. If these other features
do not yield superior results to the representation in (2),
then color does provide additional discriminant information
beyond what has already been tried. In the experimental
results, we show that these color features do indeed yield
superior results to those of the state of the art. This demon-
strates that color does provide supplementary discriminant
features.

Xij = (Mijla sy Bigryy Oigly - ooy Odgry

2.2

We now derive an approach to define the above computed
color information of equation (2) as a function invariant to

Invariant functional representation of color
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time, i.e.,, our functional representation needs to be con-
sistent regardless of where in the video sequence an AU
becomes active.

This problem is illustrated in Figure 3. As made clear in
this figure, we have the color function f(.) that defines color
variations of a video sequence V, and a template function
fr(.) that models the color changes associated with the
activation of an AU (i.e., from AU inactive to active). Our
goal is to determine if fp(.) is in f(.).

This problem can be readily solved by placing the tem-
plate function fr(.) at each possible location in the time
domain of f(.). This is typically called a sliding-window
approach, because it involves sliding the window left and
right until all possible positions of f7(.) have been checked.
Unfortunately, this is extremely time consuming.

To solve the problem of computational complexity de-
fined in the preceding paragraph, we derive a matching
method using the Gabor transform instead. The Gabor
transform is specifically designed to determine the fre-
quency and phase content of a local section of a function.
This allows us to derive an algorithm to find the matching
of fr(.)in f(.) without having to resort to a sliding-window
search. Let us define this process formally.

Without loss of generality let f(¢) be a function describ-
ing one of our color descriptors, e.g., the mean of the red
channel in the j'* triangle of sample video i. Then, the
Gabor transform of this function is,

Gt.f)= [ sl -t man @

where ¢(t) is a concave function [34] and jy = v/—1. Herein,
we use the pulse function,

1, 0<t<L
9(t) = { 0, otherwise , )
where L is a fixed time length.
Using (4) in (3) yields
t
Gt.f) = [ fe o ar
t—L ®)

L
_ 6727rj1/(t7L) / f(T+t - L)6727rj1/‘r dr.
JO

Note that (5) is the definition of a functional inner prod-
uct in the span [0, L] and, thus, G(., .) can also be written as
follows,

G(t, f) = e 2D (f(r 4t = L),e”>™T), (6

where (., .) is the functional inner product. It is important to
point out that our definition of the Gabor transform in (6)
is both continuous in time and frequency, in the noise-free
case.

To compute the color descriptor of the it" video, f;, (t),
we define all functions in a color spaces spanned by a set of
b basis functions ¢(t) = {¢po(t), ..., pp—1(t)}, with f; (t) =
Zz;é i, 20.(t) and ¢;; = (¢i0,-- -, cilb_l)T the vector of
coefficients. This allows us to compute the functional inner
product of two color descriptors as,

L
71 y Jig = 1117 Piq 1o 1o d
(Fir (0, fn (1)) Z/ o b0 0) g O0) 0

= CZ?I ‘I)(t) Ciyy
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where ® is a b x b matrix with elements ®,; = (¢; (%), ¢;(t)).

Our model assumes that statistical color properties
change smoothly over time and that their effect in muscle
activation has a maximum time span of L seconds. The basis
functions that fit this description are the first several compo-
nents of the real part of the Fourier series, i.e., normalized
cosine basis.

Let the cosine bases be v, (t) = cos(2nzt), z = 0,...,b—
1. The corresponding normalized bases are

i o wz (t)
Ve = (W (1), = (1)) ®

We use this normalized basis set, because it allows us to
have ® = Id;, where Id; denotes the b x b identity matrix,
rather than an arbitrary positive definite matrix.

Importantly, the above derivations with the cosine bases,
makes the frequency space implicitly discrete. This allows
us to write our Gabor transform G(.,.) of color functions
given in (6) as

é(taz) = <ﬁ1(t)a$z(t)> = Ciy2, 2:07'--76717 (9)

where f;, (t) is our computed function f;, (t) in the interval
[t — L,t] and ¢;, , is the 2!" coefficient.

The number of cosine basis functions b is determined
by performing a grid-search between a minimum of 5 to a
maximum of 20 basis functions. We pick the b that yield the
best performance (as measured in section 5). It is crucial to
note that since the above-derived approach does not include
the time domain, we can always find these coefficients. This
thus allows us to solve the matching of functions without
resorting to the use of sliding windows.

In the next section we derive a functional classifier that
exploits the advantages of this functional representation.

3 FUNCTIONAL CLASSIFIER OF ACTION UNITS

The key to our algorithm is to use the Gabor transform
derived above to define a feature space invariant to the
timing and duration of an AU. In the resulting space, we
can employ any linear or non-linear classifier. Here, we
report results on Support Vector Machines (SVM) and a
Deep multilayer perceptron Network (DN).

3.1 Functional color space

As stated earlier, our feature representation is the collection
of functions describing the mean and standard deviation of
color information from distinct local patches, which requires
simultaneous modeling of multiple functions. This is readily
achieved in our formulation as follows.

We define a multidimensional function I';(t) =
(i), ... ,yig(t))T, with each function 7§(¢) the mean or
standard deviation of a color channel in a given patch. Using
the basis expansion approach described in Section 2.2, each
~¢(t) is defined by a set of coefficients ¢;¢ and, thus, I';(¢) is
given by:

c;l = [(cil)T, oo ()T (10)
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Fig. 4. Top: A schematic representation of positive samples (blue
squares) and negative samples (orange triangles). Positive feature vec-
tors correspond to videos with the activation of a specific AU. Negative
sample videos do not have that AU present. Note that the sample videos
need not be of the same length. Bottom: An example of a color functional
space obtained with a SVM classifier for video sequences of facial
expressions with AU 12 active/inactive.

Using this notation, we can redefine the inner product for
multidimensional functions. With our normalized Fourier
cosine bases we get,

g
(Li(), T;(0) = Y (v (0,75 (1) = _(ef)ej =ci'e;.
e=1 (11)

We use a training set of video sequences to optimize
each classifier. It is important to note that our approach
is invariant to the length (i.e., number of frames) of a
video, Figure 4. Hence, we do not require any alignment
or cropping of the videos in our training or testing sets.

The approach derived above can readily extended to
identify AU intensity. This is done using a multi-class
classifier. In our experimental results, we trained our AU
classifiers to detect each of the five intensities, a, b, ¢, d, and
e [2] plus AU inactive (not present). This is a total of six
classes.

Testing in videos is directly given by the equations de-
rived above. But we can also use these learned functions to
identify AUs in still images. The algorithm used to achieve
this is presented in Section 4.
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3.2 Support Vector Machines

The training set is {(7:(t),y1),.--, (Yn(t),yn)}, where
vi(t) € HY, H" is a Hilbert space of continuous functions
with bounded derivatives up to order v, and y; € {—1,1}
are their class labels, with 41 indicating that the AU is active
and —1 inactive.

When the samples of distinct classes are linearly sepa-
rable, the function w(t) that maximizes class separability is
given by

N {; (w(t), w(v) + OZ@}
subject to yi ((w(t),vi(t)) —v) > 1 =&,

& >0, 12)
where v is the bias and, as above, (v;(t),7;(t)) =
J i(t)~v;(t) dt denotes the functional inner product, Figure
4, & = (&, ... 7§n)T are the slack variables, and C' > 0 is a
penalty value found using cross-validation [35].

Applied to our derived approach to model I'; using
normalized cosine coefficients jointly with (11), transforms
(12) to the following criterion

. 1 "
J(w,v,€, &) = min {QWTW—FCZ& (13)

wiiba i=1
- zn:@i (yi (WTCi - U) -1 +£i) - znzoi&} :
i=1 i=1

where C' > 0 is a penalty value found using cross-
validation.

The bottom plot in Figure 4 shows the functional feature
spaces of an actual AU classification — AU 12. Since one can
only plot two-dimensional feature spaces, we projected the
original color spaces onto the first two principal components
of the data. This was done with Principal Components
Analysis (PCA). The two resulting dimensions are labeled
¢PCAk, k - 172.

Once trained, this system can detect AU activation in
video in real time, > 30 frames/second/CPU thread.

3.2.1 Deep network approach using multilayer perceptron

In the previous section, we used a SVM to define a linear
classifier in Gabor-transform space. This formulation yields
a linear classifier on the feature space of the c;. We will now
use a deep network to identify non-linear classifiers in this
color feature space.

We train a multilayer perceptron network (MPN) using
the coefficients c;. This deep neural network is composed of
5 blocks of fully connected layers with batch normalization
[36] and rectified linear units (ReLu) [37]. To effectively train
the network, we used data augmentation by super-sampling
the minority class (active), class weights and weight decay.
A summary of the proposed architecture for each AU is in
Table 1.

We train this neural network using gradient de-
scent. The resulting algorithm works in real time, > 30
frames/second /CPU thread.
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Layer type Input size

Fully + batch normalization + ReLu 3,210

Fully + batch normalization + ReLu 1,056

Fully + batch normalization + ReLu 528

Fully + batch normalization + ReLu 132

Fully + batch normalization + ReLu 64

Fully + sigmoid 64

TABLE 1
Description of the deep network architecture used in this paper.

ut Functional representation_ ;v
fiji

Fig. 5. Each video segment W;; (shown on the bottom left) yields
a feature representation f;;;, (top left), ; = 1,...,107. We regress
a function g(.) to learn to map from the last image of Wy, to f;;x,
j=1,...,107 (right image).

4 AU DETECTION IN STILL IMAGES

People generally first observe dynamic facial expressions.
Nonetheless, later, we have no problem recognizing facial
expressions in still images. We derive an approach that
allows our algorithm to recognize AUs in still images [38].

To be able to apply our algorithm to still images, we
need a procedure that specifies the color functions f; of
image I,. That is, we need to define the mapping h(I;) =f;,
Figure 5. And, recall, f; is defined by its coefficients c’.
These coefficents can be learned from training data using
non-linear regression.

We start with a training set of m videos, {V1,..., Vi, }.
As above, V; = {I;1,...,L;,}. We consider every sub-
set of consecutive frames of length L (with L < 1r;),
i.e., Wﬂ = {Iila ‘e aIz’L}/ W,L'Q = {Iig, NN 7Ii(L+1)}/ ey
Witri—1) = {Li¢ri—1), - - - » Lir, } This allows us to compute
the color representations of all W;;, as described in Section
2.1. This yields x;; = (xilk,...,xilmk)T for each Wy,
k=1,...,r — L. Following (2),

.,O'ijL)T, (14)

Xijk = (Mijlw--»,uiijUijl,--

where ¢ and k specify the video W;y, and j the patch, j =
1,...,107 (Figure 2).

Next we compute the functional color representations
fiji of each W;; for each of the patches, j = 1,...,107.
This is done using the approach detailed in Section 2.2.
That yields f;;, = (Cijkla RN Ciij)T, where c¢;;i4 is the qth
coefficient of the j patch in video W;;.

Our training set is then given by the pairs {x;;, fijx}-
This training set is used to regress the function f;;;, =
h(x;;k), Figure 5.

Specifically, let T be a test image and X; its color rep-
resentation in patch j. We use Kernel Ridge Regression to
estimate the qth coefficient of this test image as follows,

éiq = CT (K + MId) " k(%5), (15)
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where X; is the color feature vector of the jth
T .

C = (cljlq, . 7cmj('r'm7L)q) is the vector of coef-
ficients of the j'* patch in all training images, K is
the Kernel matrix, K (4, j) k(xije, %) (@ and 7 =
l,....m, k and k = 1,...,r; — L), and k(xj) =
(k(%j,%1j1),- - -, k(fcj,xmj(rm_L)))T. And, we use the Ra-
dial Basis Function kernel, k(a, b; n) = exp(—n||a — b||?).

The parameters 1 and ) are selected to maximize accu-
racy and minimize model complexity. This is the same as
optimizing the bias-variance tradeoff. We use the solution
to the bias-variance problem presented in [39].

As shown above, we are ready to use the regressor on
previously unseen test images. If I is a previously unseen
test 1mage Its functional representation 1s readily obtained
as ¢ = h(x), with ¢ = (c11, .. .,0107Q) This functional
color representation can be directly used in the functional
classifier derived above.

patch,

5 EXPERIMENTAL RESULTS

The goal of this paper is to introduce a color feature space
that can be efficiently and robustly used for the recognition
of AUs. This section details experimental results of the the-
oretical work introduced above. We show that the proposed
algorithm, which uses color features, performs better than
state-of-the-art algorithms.

5.1 Comparative results

We provide comparative results against state-of-the-art algo-
rithms on four publicly available datasets: Denver Intensity
of Spontaneous Facial Action (DISFA) [40], Shoulder Pain
(SP) [41], Binghamton-Pittsburgh 4D Spontaneous Expres-
sion Database (BP4D) [42], Affectiva-MIT Facial Expression
Dataset (AM-FED) [43], and Compound Facial Expressions
of Emotion (CFEE) [19]. AM-FED is a database of videos
of facial expressions “in the wild,” while DISFA, SP and
BP4D are videos of spontaneous expressions collected in the
lab. CFEE is a database of still images rather than video
sequences.

In each database, we use subject independent 10-fold
cross-validation, where all frames from a few subjects is
held out from the training set and only used for testing. This
ensures that subject specific patterns cannot be learned by
the classifier. The results of the proposed algorithm are com-
pared to the available ground-truth (manually annotated
AUs). To more accurately compare our results with state-
of-the-art algorithms, we compute the F; score, defined
as, Fi = 2(Precision - Recall)/(Precision + Recall), where
Precision (also called positive predictive value) is the frac-
tion of the automatic annotations of AU i that are correctly
recognized (i.e., number of correct recognitions of AU 7 /
number of images with detected AU %), and Recall (also
called sensitivity) is the number of correct recognition of
AU 7 over the actual number of images with AU 1.

Comparative results on the first four datasets are given
in Figure 6. Our results are compared against the methods of
Emotionet [8], Hierarchical-Restricted Boltzmann Machine
(HRBM) [44], Transferring Latent Task Structures (TLTS)
[45], [,-norm [46], Discriminant Label Embedding (DLE)
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Fig. 6. F1 scores for the proposed approach and a variety of published
algorithms. Note that not all published methods provide results for all
AUs. This is why you see empty columns in the plots above. Average
(Avg) is computed using the results of the available AUs in each algo-
rithm. First plot: BP4D. Second plot: DISFA. Third plot: SP. Four plot:
AM-FED.

[47], Cross-dataset Learning Support Vector Machine (CLM-
SVM) [48], and Multi-Conditional Latent Variable Model
(MC-LVM) [49]. We also make comparisons with our system
annotating frames of the video sequences as still images,
using the method described in section 4, and a version of
our system that only computes these features in a single
intensity channel (i.e.,, uses only grey-scale information).
These results are labelled “This paper (still images)” and
“This paper (grey-scale)”.

As we can see in this figure, the herein derived color
features achieve superior results to other feature represen-
tations previously used in the literature. Also, these results
demonstrate that the proposed Gabor transform approach
and functional classifier are efficient algorithms for the
recognition of AUs in video. Further, it is apparent that both
estimating the functional representation using the Gabor
transform and using color based features is crucial to this
system, as classifying only using still images or using only
grey-scale images yields inferior results.

It is important to note that the results of the non-linear
classifier (given by a deep network) are not significantly su-
perior to those of a simple linear classifier. This is important,
because it further demonstrates that the color features used
herein efficiently seperate the feature vectors of different
classes (i.e.,, AU active vs. inactive). This was previously
illustrated in the bottom plot of Figure 4.

It is also important to note that our algorithm works
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DN-5layer DN-10layer SVM-RBF SVM - polynomial SVM - tanh
BP4D 0.912 0.911 0.859 0.853 0.847
DISFA 0.966 0.958 0.964 0.943 0.951
SP 0.928 0.927 0.925 0.928 0.925
AMFED 0.844 0.851 0.822 0.819 0.821
TABLE 2

Average F1 score for different classifiers

faster than real-time, >30 frames/second /CPU thread.

5.2 ROC curves

To further study the results on the proposed feature rep-
resentation, we provide ROC (Receiver Operating Charac-
teristic) curves in Figures 7-10. ROC plots display the true
positive rate against the false positive rate. The true positive
rate is the sensitivity of the classifier. The false positive rate
is the number of negative test samples classified as positive
over the total number of false positives plus true negatives.

ROC curves are computed as follows. The derivations
of our approach have an equal priors assumption. That is,
the probability of AU being active is the same as that of
not being active. We can however vary the value of these
priors. Reducing the prior of AU active will decrease the
false detection rate, i.e., it is less likely to misclassify a face
that does not have this AU active. Increasing the prior of AU
active will increase the true positive detection rate. This is a
simple extension of our algorithm that allows us to compute
ROC curves.

The plots in Figures 7-10 allow us to compute the area
under the curve for the results of our algorithm. We do this
for all four datasets — BP4D, SP.0, DISFA and AM-FED. The
results are in Table 3.

5.3

One may wonder if the results reported above vary as a
function of skin color/tone. Close analysis of our results
shows that this is not the case, i.e., our feature representation
is invariant to skin tone.

To demonstrate this, we divided our training samples
into four groups as a function of skin color — from lighter to
darker skin. We call these skin tonalities: levels 1, 2, 3 and 4.
Level 1 represents the lightest tone and level 4 the darkest.
The 10-fold cross-validation results using each of these four
groups are shown in Figure 11.

A t-test showed no statistical difference in the results of
Figure 11 across skin tones. The null hypothesis that these
results are different was disproven: p > .1 in DISFA, p > .8
in BP4D, p > .3 in SP.

Figure 12 shows qualitative results on two videos of
people of different ethnicity and skin color.

Invariance to skin color

5.4 AU recognition in still images

In Section 4, we derived an approach that allows us to use
our algorithm to detect the presence of AUs in still images;
even thought the training was done using video sequences.

To achieve this, we trained the proposed regressor h(.)
using the three dataset of videos used in the preceding
sections. Then, we test the trained system on the still images

of the CFEE of [19]. This means that the functions of every
test image I are estimated as f = h(X).

Figure 13 provide comparative results against the Emo-
tioNet algorithm of [25]. To our knowledge, this is the only
other algorithm that has been applied to this dataset to date.
It also provides comparative results of using only static color
features for each image (i.e., without the proposed regressor)

We see that the results of the proposed algorithm are
superior to those of previous approaches for AUs 1, 2, 4,
25 and 26. It is also clear that the regressor is a crucial
component of the algorithm, as the results are inferior
without it.

5.5 AU intensities

The recognition of intensity of activation of each AU is of
high importance in most applications. This section demon-
strates that our approach achieves intensity estimation er-
rors that are smaller than those given by state-of-the-art
algorithms.

Mean Absolute Error (MAE) is used to calculate the
accuracy of the estimated intensities of AU activation. To do
this each of the six levels of activation is given a numerical
number. Specifically, AU not present (inactive) takes the
values 0, intensity a the value 1, intensity b the value 2,
intensity c the value 3, intensity d the value 4, and intensity
e the value 5. The intensity estimate of the a!* samples with
AU ¢ active as given by an algorithm is u;,. This estimates
are compared to the ground-truth ;,,

MAE, =+ | ttiq — iiq | (16)
M a=1
where n; is the number of samples with AU i active.

Figure 14 provides comparative results for the recog-
nition of AU intensity. This plot shows the results of the
algorithm derived in this paper and those of Multi-Kernel
Support Vector Machine (MK-SVM) [50], Context Sensitive
Dynamic Ordinal Regression (CS-DOR) [51], Rotation In-
variant Feature Regression (RIFR) [52], and EmotioNet [25].

6 CONCLUSIONS

The automatic recognition of facial action units and their
intensities is a fundamental problem in computer visions
with a large number of applications in the physical and bio-
logical sciences [3], [4], [38]. Recent computational models
of the human visual system suggest that the recognition
of facial expressions is based on the visual identification of
these AUs, and a recent cognitive neuroscience experiment
has identified a small brain region where the computations
associated with this visual recognition likely take place [13].
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AU 1 2 4 5 6 7 9 10 11 12 14
BP4D 9656 9736 9808 973 9656 9813 9636 9983 .9842 9847 .9447
SP .9935 29931 993 9911 .9961 .9936
DISFA 9862 9921 9886 9891 .9914 .9959 .9866
AM-FED 9913 9858 .9927 9873 9873 9947
AU 14 15 16 17 20 23 25 26 28 32
BP4D 9447 9535 9802 9405 9753 9446 9914 9973
SP .9856 9861 9936
DISFA .9895 985  .9884 9956 9859
AM-FED 9845 .9887 9923
TABLE 3

Area under the curve of the ROC curves shown in Figures 7-10.
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Previous approaches to this automatic recognition have
exploited shading, shape, motion and spatio-temporal fea-
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Remarkably absent from this list of features is color.
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pression, one needs to move the facial muscles under our
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that local area. This yields clearly visible color changes that,
to the authors knowledge, have not been exploited before.

The present work has derived the first comprehensive
computer vision algorithm for the identification of AUs
using color features.

We derived a functional representation of color and a
highly innovative Gabor transform that are invariant to the
timing and duration of these AU activations. We also define
an approach that allows us to apply our trained functional
color classifier to still test images. This was done by learning
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In summary, the present work reveals how facial
color changes can be exploited to identify the presence
of AUs in videos and still images. Skin color tone is shown
to not have an effect on the efficacy of the derived algorithm.
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