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After finishing this sentence, look around, find a person 
you know, and then look briefly at his or her face. What 
can you tell about this person? Likely the person’s name 
(identity) and emotional state come to mind. Most of us 
effortlessly extract this information from the smallest of 
glimpses.

This article reviews our current understanding of the 
computations that are performed by the brain to achieve 
these seemingly effortless tasks—visual recognition of 
identity and emotion. We assume that the brain is a type 
of computer running algorithms specifically dedicated to 
the interpretation of other people’s faces. The goal is to 
decode and understand these algorithms using computa-
tional modeling. Specifically, this article details how cur-
rent progress in computational modeling is helping us 
understand how the brain recognizes faces.

My use of computational models is based on the 
hypothesis that the brain is tasked with solving the 
inverse problem of image production. That is, if f(.) 
defines how a facial attribute maps onto an image in the 
retina, then the brain’s goal is to solve the inverse prob-
lem, f−1(.)—how the image on one’s retina translates into 
understanding a facial attribute.

For example, imagine you are looking at Sally’s face. 
Here, the brain’s goal is to recover the name “Sally.” More 

formally, the retinal image, I, is equal to Sally’s face: I = 
f(Sally’s face). And the goal is to compute the inverse 
function: Sally’s face = f−1(I).

The identity of someone’s face is engraved in the per-
son’s three-dimensional face structure and the reflectance 
properties of the person’s skin. These are examples of 
some of its diagnostic features. But this is not what we 
see. Rather, the two-dimensional shape of the face on 
your retinal image depends on the viewing angle and the 
person’s facial expression. The brain’s goal is to uncover 
the diagnostic features and filter out variations due to 
expression, viewing angle, and illumination.

It is imperative to note that computational modeling is 
useful only if it identifies these diagnostic features, algo-
rithms, and mechanisms involved in the recognition of 
faces. In the following sections, I show that some 
machine-learning approaches, such as deep learning, are 
not generally helpful for answering these questions.
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Abstract
Faces are one of the most important means of communication for humans. For example, a short glance at a person’s 
face provides information about his or her identity and emotional state. What are the computations the brain uses 
to acquire this information so accurately and seemingly effortlessly? This article summarizes current research on 
computational modeling, a technique used to answer this question. Specifically, my research tests the hypothesis that 
this algorithm is tasked with solving the inverse problem of production. For example, to recognize identity, our brain 
needs to identify shape and shading features that are invariant to facial expression, pose, and illumination. Similarly, 
to recognize emotion, the brain needs to identify shape and shading features that are invariant to identity, pose, and 
illumination. If one defines the physics equations that render an image under different identities, expressions, poses, 
and illuminations, then gaining invariance to these factors can be readily resolved by computing the inverse of this 
rendering function. I describe our current understanding of the algorithms used by our brains to resolve this inverse 
problem. I also discuss how these results are driving research in computer vision to design computer systems that are 
as accurate, robust, and efficient as humans.
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Recognition of Identity

Look at the left image in Figure 1. This is a two-dimensional 
image, I. Now, look at the image to its right. This image 
defines the shape, s, of the main components of that face.

Given many face images and their shapes ({Ii , si }, i = 1, 
. . . n), one can compute the mean shape as well as the 
major differences (i.e., the largest standard deviations) 
between shapes. These variances are given by principal 
component analysis, a statistical technique that allows us 
to find the shape features that produce maximum vari-
ability (Martinez & Kak, 2001). The resulting representa-
tion is called a norm-based face space, because all faces 

are described as deviations from the mean (norm) sample 
shape (Leopold, Bondar, & Giese, 2006), Figure 2.

Recall, however, that our retinal image, Ii, is two-
dimensional but that diagnostic features exist in three-
dimensional space. Can we design an algorithm that 
estimates the three-dimensional shape of a face from a 
single image? Yes. In fact, everyday experience proves 
this. When you looked at a face at the beginning of this 
article, you probably just saw it from a single viewing 
angle. Yet you were able to mentally imagine other views 
of that face as well.

My students and I have shown that the computations 
needed to solve this problem are quite simple (Zhao, 
Wang, Benitez-Quiroz, Liu, & Martinez, 2016). The algo-
rithm works as follows: Given a set of two-dimensional 
images and their corresponding three-dimensional shapes 
({Ii , Si }, i = 1, …, n), we use a machine-learning technique 
called regression (You, Benitez-Quiroz, & Martinez, 2014) 
to learn the functional mapping from a retinal image to 
a three-dimensional shape, Si = f(Ii ); see Figure 3 for 
an illustration of such a regression. Once this function 
has been learned using the available training data, we 
can use it to estimate the three-dimensional shape, Ŝ, of 
a previously unseen face image, Î , as expressed in the 
following equation: Ŝ = f(Î  ).

The model above allows us to map an initial face image 
to a rotation-invariant representation. Physiological stud-
ies, though, suggest the existence of an intermediate 

Fig. 1.  An image of a face (left) and its corresponding shape (right). 
(Face image drawn from Du, Tao, & Martinez, 2014.)

Fig. 2.  A norm-based face space. Shown here are the two dimensions with largest variance in 
the shape space; the four face images correspond to each of the four feature vectors, respec-
tively. The farther away a face is from the origin of this space, the easier it is to recognize. Here, 
the face demarked with a red border (bottom left) is easier to recognize than the face delin-
eated with a green border (top right). (Face images drawn from Du, Tao, & Martinez, 2014.)
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representation invariant to mirror images of profile views 
(Meyers, Borzello, Freiwald, & Tsao, 2015). A simple anal-
ysis based on projective geometry shows that the basis 
functions (e.g., principal components) obtained with the 
above formulation yield the same response for mirror-
symmetric images (Leibo, Liao, Anselmi, Freiwald, & 
Poggio, 2016). As an intuitive proof, note that faces are 
symmetric about the vertical midline of the face. Thus, 
rotating a face 90° to the left and 90° to the right yields 
basically the same image, up to a mirror projection.

Deep Learning

If the function f(.) presented above is defined by many 
parameters, the resulting regression approach is called 
deep learning. In deep learning, one must use a very 
large number of training samples to successfully estimate 
that same number of parameters, an increasingly popular 
approach called big data.

Deep learning has recently achieved good results in 
addressing several problems in computer vision, includ-
ing face recognition (e.g., Kemelmacher-Shlizerman, 
Seitz, Miller, & Brossard, 2016). Unfortunately, this tech-
nique does not generally help us uncover the underlying 
computations of the algorithm used by our visual system. 
For one, we do not yet know how to apply deep learning 
to solve many problems in face recognition—for instance, 
recognition under varying illumination, or the recogni-
tion of emotion. Also, the reliance on big data makes 

deep learning an unlikely model of human vision. 
Humans generally learn from a single sample (Martinez, 
2002, in press), not the thousands required by current 
deep-learning algorithms. And, crucially, deep learning 
does not generally provide information on the mecha-
nisms used by the brain to decode facial attributes. That 
is, we might be able to design computer algorithms that 
identify people’s faces very accurately, yet learn nothing 
about the brain.

To clarify this point, imagine a physicist trying to 
understand the behavior of a number of particles. Given 
enough observations of the behavior of these particles, 
deep learning could certainty be used to identify a func-
tion describing their behavior. This function would allow 
us to predict the state, y, of the particles, x, after an event, 
f(.): y = f(x). But this would not provide any insights into 
the mechanisms involved in that process—that is, the 
laws of physics. The same applies to the study of the 
visual system. It is not sufficient to demonstrate that there 
exists a function that maps an image to a facial attribute. 
We also wish to uncover the specific computations used 
by the brain to accomplish this. I argue that we need to 
refocus our research toward computational models that 
can solve this problem.

Gilad, Meng, and Sinha (2009) suggested that local con-
trast polarities between a few regions of the face (espe-
cially those around the eyes) encode critical information 
about a person’s identity and that the brain uses this infor-
mation to recognize people’s faces. Subsequently, Ohayon, 
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Fig. 3.  A plot illustrating a regressor estimating the three-dimensional shape of a face from a two-dimensional image. Here, two of 
the axes define the image space. The third (vertical) axis defines the three-dimensional shape. Of course, in reality, the image space 
and the 3D-shape space are defined by more dimensions. The function f(.) is the regressor, which defines a non-linear manifold. 
This manifold specifies the mapping between an image, Ii, and its three-dimensional shape, Si: Si = f(Ii). (Face images drawn from 
Du, Tao, & Martinez, 2014.)
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Freiwald, and Tsao (2012) identified cells in the macaque 
monkey brain that selectively respond to such contrast 
variations. Computer vision algorithms based on this local 
contrast polarity successfully detect and recognize faces in 
images (Turk, 2013; Zhao et al., 2016). Furthermore, this 
model explains how one is able to recognize partially 
occluded and expression-variant faces (Jia & Martinez, 
2009)—for example, using graph matching (Aflalo, 
Bronstein, & Kimmel, 2015; Zhao & Martinez, 2016). These 
results do point toward an understanding of some of the 
computations underlying the perception of faces.

Facial Expressions of Emotion

Another aspect of face perception is our remarkable abil-
ity to interpret facial expressions. Facial expressions con-
vey a lot of information, such as a person’s emotional 
state. Like the representation of face identity, the repre-
sentation of facial expression uses a norm-based model 
(Neth & Martinez, 2009, 2010). However, the dimensions 
employed in the recognition of emotion are, for the most 
part, different (Martinez & Du, 2012; Richoz, Jack, Garrod, 
Schyns, & Caldara, 2015; Sormaz, Young, & Andrews, 
2016). We therefore say that the form of the face space is 
the same for expression and identity but that the dimen-
sions defining this space differ between the two. What 
are the features that represent these dimensions, then?

Studying the physical reality of facial expressions 
shows that they are produced by contracting and relaxing 
different muscles in the face (Duchenne, 1862/1990). 
Thus, I hypothesize that the brain solves the inverse prob-
lem by attempting to decode which facial muscle actions, 
h(I), are active during a particular expression (Martinez, 
in press). My research group has recently developed a 
computer vision system based on this model, using an 
algorithm that accounts for shape and shading features 
and incorporating it into machine-learning algorithms that 
identify which of these features best discriminate the 
muscles involved in each expression (Benitez-Quiroz, 
Srinivasan, & Martinez, 2016; Du, Tao, & Martinez, 2014).

Take the example of a small cheek muscle that is used 
to pull the lips outward to create a smile. Unsurprisingly, 
our machine-learning approach identified shape and 
shading changes in the corners of the mouth as the most 
discriminant feature for smiles. Likewise, contracting a set 
of three facial muscles located at the top of the face results 
in the lowering of the inner corners of the brows. Yet the 
most discriminant shape and shading features that allow 
us to detect this facial action are associated with more 
distal parts of the face—the brow-to-mouth distance and 
the face’s height-to-width ratio—because they change 
when one contracts these muscles (Du et al., 2014). 
Accordingly, the algorithm assumes that these muscles are 
active when processing the faces of people who have 
very thin faces with unusually large distances between 
their brows and mouths (Martinez, in press).

This effect is clearly visible in Figure 4. In the left 
image, we see the male character in Grant Wood’s paint-
ing American Gothic. Note that this person is not express-
ing any emotion, yet you are likely to perceive sadness in 
his expression. Using morphing software, we can decrease 
the distance between his brows and mouth and make his 
face wider, as shown in the right image. Notice how the 
face now looks angry because we have incidentally 
altered it to display the image features associated with the 
facial muscle actions used to express anger.

If this algorithm is indeed implemented in our brains, 
then there should be an area of the brain dedicated to the 
detection of these facial muscle actions. In a recent arti-
cle, my research group identified one such region just 
behind the right ear: the posterior superior temporal sul-
cus (Srinivasan, Golomb, & Martinez, 2016).

Compound Emotions

An ongoing debate in emotion theory concerns the number 
of facial expressions that people can visually recognize. 
Darwin (1872/1965) argued that six facial expressions of 
emotion can be visually recognized across cultures. How-
ever, my group’s computational modeling presented above 

Fig. 4.  The American Gothic illusion. The image on the left is the 
male character in Grant Wood’s famous American Gothic painting, typi-
cally described as having a sad expression. However, this man is not 
expressing any emotion; if you look closely, you will see that his face is 
at rest, assuming a neutral expression. Research suggests that the char-
acter appears to be sad because Wood painted him with an elongated 
face (i.e., a very thin face), including an exaggeratedly long distance 
between his brows and mouth. The image on the right is a morphed 
image, manipulated to be wider and to have a significantly shorter 
brow-to-mouth distance—changes that cause the character to be per-
ceived as angrier. These results are consistent with the predictions of 
our computational model.
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suggests that the visual system does not attempt to catego-
rize facial expressions but, rather, simply identifies the facial 
muscle actions involved in the production of expressions. 
Why should that be, given that it is obviously easier to visu-
ally identify six facial expressions than to try to decode indi-
vidual facial muscle actions? My hypothesis is that by 
identifying facial muscle actions, the visual system can cat-
egorize many more than six facial expressions. Our current 
model suggests that people might be able to recognize over 
a hundred categories of expressions (Benitez-Quiroz, 
Srinivasan, & Martinez, 2016). It is certainly easier to identify 
a few facial muscle actions than to derive an algorithm that 
can discern such a large number of categories.

So far, we have identified 23 facial expressions of emo-
tion, including compound emotions (e.g., angry surprise, 
happy disgust; Du & Martinez, 2015; Du et al., 2014). We 
are currently studying an even larger number of facial 
expressions that correspond to about 400 affect concepts 
(e.g., anxiety, embarrassment, and fatigue; Benitez-Quiroz, 
Srinivasan, & Martinez, 2016). And, although we do not 
yet know which are universally used and recognized, our 
preliminary analysis suggests that the number of univer-
sally recognized expressions is much larger than current 
models propound.

Everyday experience seems to corroborate our ability 
to use the face to express many more than just a few emo-
tion categories. People seem to use their faces to commu-
nicate a large number of concepts. But which ones?

Grammatical Markers

The ability to produce and visually recognize compound 
facial expressions of emotion allows people to communi-
cate complex concepts nonverbally. Of note, I hypothesize 
that compound emotions have evolved into grammatical 

markers. For example, in a recent article (Benitez-Quiroz, 
Wilbur, & Martinez, 2016), my research group showed that 
compounding the facial expressions of anger, disgust, and 
contempt yields an expression that serves as a marker of 
negation. If this is part of human language, we can call it 
a grammatical marker—specifically, a grammatical marker 
of negation (i.e., negative polarity). This means you can 
use this expression to convert a positive sentence into a 
negative one.

We call this expression the “not face,” and it is illus-
trated in Figure 5. We have shown that this compound 
facial expression of emotion is used in a variety of cul-
tures and languages, including English, Spanish, Mandarin 
Chinese, and American Sign Language (ASL). Crucially, in 
ASL sentences, the “not face” is sometimes the sole 
marker of negation. That is, if you do not see the face of 
the signer, you may not know if the signed sentence is 
positive or negative.

A fundamental and unanswered question in the cogni-
tive sciences is: Where does language come from? 
Whereas most of our human abilities can be traced back 
to similar or more primitive versions of the same ability 
in our closest living species, language cannot. The idea 
that the “not face” is a compound facial expression of 
emotion is significant because it implies a plausible evo-
lutionary path for the emergence of language through the 
expression of emotion.

As significant as this implication might be, more 
research is needed to test this hypothesis. Uncovering the 
origins of language is one of the most exciting problems 
in science. But although the results discussed above have 
shown how computational models can aid in this search, 
additional studies will need to be completed to provide a 
clear picture of the emergence of grammatical markers 
through the expression of emotion.

Fig. 5.  The “not face.” This expression is used as a marker of negation in at least four different lan-
guages—that is, speakers may produce this expression when they want to convey a negative statement 
(e.g., “No, I didn’t go to the party”). In sentences in American Sign Language (ASL), this expression may 
be the sole marker of negation—a grammatical marker. The images, from left to right, show the “not 
face” as expressed by native speakers of Mandarin Chinese, Spanish, and ASL. (Face images drawn from 
Benitez-Quiroz, Wilbur, & Martinez, 2016.)
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How Many Facial Expressions  
Are There?

It is still unclear how many facial expressions are com-
monly used to communicate affect. Although research in 
my lab has provided strong evidence for the existence of 
many categories of expressions, other researchers have 
suggested that emotions are not represented categori-
cally in the brain (Skerry & Saxe, 2015) and that their 
representation is not localized in a small brain area, as 
our results indicate (Wager et al., 2015). Others have 
argued for a hierarchical organization of emotions ( Jack, 
Garrod, & Schyns, 2014): Given that facial expressions 
are dynamic, the hypothesis is that information conveyed 
earlier is more informative about a few important emo-
tion categories, and later components of expressions are 
more social-specific.

Future research will hopefully resolve the details of 
the computations performed by our brains to interpret 
faces and facial expressions. This undertaking is impor-
tant because the results will play a major role in the defi-
nition, diagnosis, and treatment of psychopathologies. At 
present, heterogeneity and reification of psychopatholo-
gies pose major challenges for translational research. It 
has been argued that a successful definition of the brains’ 
functional impairments will require a detailed under-
standing of the brain’s computational mechanisms (Insel, 
2014; Insel et al., 2010). Computational models are ide-
ally suited to address these problems.
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